Unbalanced production of proinflammatory cytokines and type I interferons in immune responses may lead to immunopathology; thus, the mechanisms that ensure the beneficial production of proinflammatory cytokines and type I interferons are of particular importance. Here we demonstrate that the phosphatase SHP-1 negatively regulated Toll-like receptor-mediated production of proinflammatory cytokines by inhibiting activation of the transcription factor NF-kappaB and mitogen-activated protein kinase. Simultaneously, SHP-1 increased the production of type I interferon mediated by Toll-like receptors and the helicase RIG-I by directly binding to and inhibiting activation of the kinase IRAK1. Our data demonstrate that SHP-1 contributes to immune homeostasis by balancing the production of proinflammatory cytokines and type I interferons in the innate immune response.
The Toll-like receptor 3 (TLR3) and TLR4-signaling pathway that involves the adaptor protein TRIF activates type I interferon (IFN) and proinflammatory cytokine expression. Little is known about how TRIF pathway-dependent gene expression is regulated. SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a widely expressed cytoplasmic tyrosine phosphatase. Here we demonstrate that SHP-2 negatively regulated TLR4- and TLR3-activated IFN-beta production. SHP-2 inhibited TLR3-activated but not TLR2-, TLR7-, and TLR9-activated proinflammatory cytokine IL-6 and TNF-alpha production. SHP-2 inhibited poly(I:C)-induced cytokine production by a phosphatase activity-independent mechanism. C-terminal domain of SHP-2 directly bound TANK binding kinase (TBK1) by interacting with the kinase domain of TBK1. SHP-2 deficiency increased TBK1-activated IFN-beta and TNF-alpha expression. TBK1 knockdown inhibited poly(I:C)-induced IL-6 production in SHP-2-deficient cells. SHP-2 also inhibited poly(I:C)-induced activation of MAP kinase pathways. These results demonstrate that SHP-2 specifically negatively regulate TRIF-mediated gene expression in TLR signaling, partially through inhibiting TBK1-activated signal transduction.
Interferon-α (IFNα) signaling is essential for antiviral response via induction of IFN-stimulated genes (ISGs). Through a non-biased high-throughput RNAi screening of 711 known epigenetic modifiers in cellular models of IFNα-mediated inhibition of HBV replication, we identified methyltransferase SETD2 as a critical amplifier of IFNα-mediated antiviral immunity. Conditional knockout mice with hepatocyte-specific deletion of Setd2 exhibit enhanced HBV infection. Mechanistically, SETD2 directly mediates STAT1 methylation on lysine 525 via its methyltransferase activity, which reinforces IFN-activated STAT1 phosphorylation and antiviral cellular response. In addition, SETD2 selectively catalyzes the tri-methylation of H3K36 on promoters of some ISGs such as ISG15, leading to gene activation. Our study identifies STAT1 methylation on K525 catalyzed by the methyltransferase SETD2 as an essential signaling event for IFNα-dependent antiviral immunity and indicates potential of SETD2 in controlling viral infections.
Graphical AbstractHighlights d Three waves of fetal hematopoiesis contribute to fetal mast cells in succession d The three origin-derived mast cells have distinct tissue preferences d Integrin b7 + CD117 + CD11b low cells are embryonic mast cell precursors d Late EMP-derived mast cells are the major composition of adult CTMCs SUMMARY Tissue-resident mast cells are associated with many inflammatory and physiological processes. Although mast cells arise from the yolk sac, the exact ontogeny of adult mast cells remains unclear. Here we have investigated the hematopoietic origin of mast cells using fate-mapping systems. We have shown that early erythro-myeloid progenitors (EMPs), late EMPs, and definitive hematopoietic stem cells (HSCs) each gave rise to mast cells in succession via an intermediate integrin b7 + progenitor. From late embryogenesis to adult, early EMP-derived mast cells were largely replaced by late EMP-derived cells in most connective tissues except adipose and pleural cavity. Thus, mast cells with distinct origin displayed tissue-location preferences: early EMPderived cells were limited to adipose and pleural cavity and late EMP-derived cells dominated most connective tissues, while HSC-derived cells were a main group in mucosa. Therefore, embryonic origin shapes the heterogeneity of adult mast cells, with diverse functions in immunity and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.