This paper presents a novel probabilistic distributed framework based on movement primitives for flexible robot assembly. Since the modern advanced industrial cell usually deals with various scenarios that are not fixed via-point trajectories but highly reconfigurable tasks, the industrial robots used in these applications must be capable of adapting and learning new in-demand skills without programming experts. Therefore, we propose a probabilistic framework that could accommodate various learning abilities trained with different movement-primitive datasets, separately. Derived from the Bayesian Committee Machine, this framework could infer new adapting trajectories with weighted contributions of each training dataset. To verify the feasibility of our proposed imitation learning framework, the simulation comparison with the state-of-the-art movement learning framework task-parametrised GMM is conducted. Several key aspects, such as generalisation capability, learning accuracy and computation expense, are discussed and compared. Moreover, two real-world experiments, i.e. riveting picking and nutplate picking, are further tested with the YuMi collaborative robot to verify the application feasibility in industrial assembly manufacturing.
This paper presents a novel distributed probabilistic framework based on movement primitives for flexible robots assembly implementation. Since modern advanced industrial cell usually deals with various tasks that are not fixed via-point trajectories but highly reconfigurable application templates, the industrial robots used in these applications must be capable of adapting and learning new skills ondemand, without programming experts. Therefore, we propose a probabilistic framework that could accommodate various learning abilities trained with different movement-primitive datasets, separately. Thanks to the fusion theory of the Bayesian Committee Machine, this framework could infer new adapting trajectories with weighted contributions of every trained datasets. To verify the feasibility of our proposed imitation learning framework, state-of-the-art movement learning framework Task-parameterized GMM is compared from several crucial aspects, such as generalization capability, accuracy and robustness. Moreover. this framework is further tested on the YUMI collaborative robot with a rivet picking assembly scenario. Potential applications can be extended to more complicated industrial assembly manufacturing or service robotic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.