Purpose The anterior cruciate ligament (ACL) rarely heals spontaneously after rupture. Mesenchymal stem cells (MSCs) contribute to healing in various tissues, therefore, they may also have a key role in healing after ACL rupture. The purpose of this study was to investigate the properties of MSCs in ruptured ACLs. Methods Human ACL samples were harvested from patients undergoing primary ACL reconstruction, and samples were classified by the number of days post rupture (phase I <21 days; phase II 21-56 days; phase III 57-139 days phase IV ≥140 days). We evaluated the characteristics of MSCs, such as colony-forming capacity, differentiation potential and cell-surface markers. Results There was a tendency for high colony-forming capacity during phases I and II, which tended to decrease in phase III. Chondrogenic, adipogenic and osteogenic differentiation potential was maintained until phase II but decreased in phase III. Most surface-epitope expression was consistent from phase I to III: positive for CD44, CD73, CD90 and CD105; negative for CD11b, CD19, CD34, CD45 and human leukocyte antigen-D-related (HLA-DR). The presence of these surface markers proved the existence of MSCs in ruptured ACL tissue. Conclusions Our results suggest that colony-forming and differentiation potential decrease over time. It is important to consider changes in properties of MSCs and use ACL tissue in the acute phase of rupture when biological manipulation is required.
Purpose: The purpose of this study was to compare the anterior tibial translation (ATT) of the anterior cruciate ligament (ACL) reconstructed-knee between single-bundle and double-bundle ACL reconstruction under cyclic loading. Methods: Single-bundle and double-bundle reconstructions of the knee were performed sequentially in randomized order on the same side using eight human amputated knees. After each reconstruction, the reconstructed-knee was subjected to 500-cycles of 0 to 100-N anterior tibial loads using a material testing machine. The ATT before and after cyclic loading and "laxity increase", which indicated a permanent elongation of the graft construct, was also determined. Results: The ATT after cyclic loading increased in both single-bundle and double-bundle reconstruction techniques compared to that without cyclic loading. Changes in ATT before and after cyclic loading were 3.9 ± 0.9 mm and 2.9 ± 0.6 mm respectively, and were significantly different. Laxity increase was also significantly different (4.3 ± 0.9 mm and 3.2 ± 0.8 mm respectively). Although no graft rupture or graft fixation failure was found during cyclic loading, the graft deviated into an eccentric position within the tunnel.
Conclusions:Although ATT was significantly increased in both single-bundle and double-bundle reconstruction with hamstring tendon after cyclic loading test, there was significant difference. Double-bundle reconstruction might be superior to prevent increasing ATT under cyclic loading. Deformation of hamstring tendon after cyclic loading might result in deterioration of knee stability after ACL reconstruction, and is one of disadvantages of soft tissue graft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.