The objective of this study is to convert bamboo into a transparent material with great optical transmittance and good strength. Bamboo has a much faster regeneration rate than wood, but its high density and high extractive content make it challenging to produce transparent products. This study presents a simple and effective approach that could address this challenge. Pretreatment of bamboo with low concentration sodium hydroxide greatly improved the preparation efficiency of transparent bamboo. The transparent bamboo with a thickness of 1 mm and cellulose volume fraction of 22% made from the pretreated bamboo exhibited an improved total optical transmissivity up to 80%, which was 60% higher than that of untreated bamboo. Compared to transparent wood (TW), although the transmissivity of transparent bamboo was slightly lower, its mechanical strength was almost doubled. Besides, the developed transparent bamboo exhibited a low heat conductivity of 0.203 W m–1 K–1, being about 10% lower than that of TW (0.225 W m–1 K–1) and approximately 80% lower than that of common glass material (0.974 W m–1 K–1). The transparent bamboo would significantly enhance energy-saving performance, being a promising alternative to traditional glass.
Based on the viscoelastic and creep deformation properties, a new deposition mechanism model for slender wood fiber particles in wast heat utilization is proposed in this paper. And the equivalent sphere method is used to describe the particle feature size in the model. With the proposed deposition model of flexible slender particles, the critical criteria are obtained. The influence of particle size, aspect ratio and damping factor on particle deposition has been investigated. The results indicate that particle deposition increases with the particle size decrease, aspect ratio and damping factor increase. According to the present deposition model, a coupling simulation with FLUENT and EDEM method was carried out for the flow field of fiber drying tail gas in heat piping exchanger, which indicated that particle deposition mainly occurred at the central windward area of fin due to the direction changer and the magnitude decrease of collision velocity between fiber particles and wall. Experiment of heat recovery of drying tail gas revealed that using the H fin tubes instead of rectangular fin tubes can greatly relieve the deposition of wood fiber particles, which provided a useful way to save energy in wood industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.