This study aims to investigate the value of chromosomal microarray analysis (CMA) and whole exome sequencing (WES) in fetuses with increased nuchal translucency (defined as NT above the 95th centile for the crown-rump length). A total of 374 singleton pregnancies with gestational ages ranging from 11 to 13 + 6 weeks were investigated. Ultrasound displayed increased NT and no detectable structural malformations in these fetuses. Pregnancies were divided into 4 groups according to the NT values: 95th centile-3.4 mm (114 cases); 3.5-4.4 mm (150 cases); 4.5-5.4 mm (55 cases); and ≥5.5 mm (55 cases). The possible chromosomal anomalies were all analyzed by CMA first. Furthermore, 24 cases with increased NT but negative CMA results were investigated by WES, and the outcomes were followed up. Among all the 374 cases, causative genetic defects were detected in 100/374 (26.7%) of the cases along with 9 variants of unknown significance (VOUS) by CMA. CMA testing yielded 30 pathogenic variants (30/55), accounting for a detection rate of 54.5%, and 1 VOUS in the group of NT ≥5.5 mm, indicating the highest detection rate in the 4 groups. The 24 cases of the CMA negative sub-cohort with WES analysis further yielded 2 VOUS and 3 likely pathogenic variants, including 2 dominant de novo mutations in SOS1 and ECE1 and 1 recessive inherited compound heterozygous mutation in PIGN, which are associated with cardiac defects. All 3 cases opted for termination of pregnancy (TOP). In addition, 2 cases with increased NT were negative by both CMA and WES analysis, and fetal demise occurred. In conclusion, for the investigation of fetuses with increased NT exome sequencing is suggested to be considered in cases with negative CMA findings. However, appropriate genetic counseling should be given to optimizing its utilization in prenatal diagnosis.
BackgroundLong non-coding RNAs (lncRNAs) have previously been emerged as key players in a series of biological processes. Dysregulation of lncRNA is correlated to human diseases including neurological disorders. Here, we developed a multi-step bioinformatics analysis to study the functions of a particular Down syndrome-associated gene DSCR9 including the lncRNAs. The method is named correlation-interaction-network (COIN), based on which a pipeline is implemented. Co-expression gene network analysis and biological network analysis results are presented.MethodsWe identified the regulation function of DSCR9, a lncRNA transcribed from the Down syndrome critical region (DSCR) of chromosome 21, by analyzing its co-expression genes from over 1700 sets and nearly 60,000 public Affymetrix human U133-Plus 2 transcriptional profiling microarrays. After proper evaluations, a threshold is chosen to filter the data and get satisfactory results. Microarray data resource is from EBI database and protein–protein interaction (PPI) network information is incorporated from the most complete network databases. PPI integration strategy guarantees complete information regarding DSCR9. Enrichment analysis is performed to identify significantly correlated pathways.ResultsWe found that the most significant pathways associated with the top DSCR9 co-expressed genes were shown to be involved in neuro-active ligand-receptor interaction (GLP1R, HTR4, P2RX2, UCN3, and UTS2R), calcium signaling pathway (CACNA1F, CACNG4, HTR4, P2RX2, and SLC8A3), neuronal system (KCNJ5 and SYN1) by the KEGG, and GO analysis. The A549 and U251 cell lines with stable DSCR9 overexpression were constructed. We validated 10 DSCR9 co-expression genes by qPCR in both cell lines with over 70% accuracy.ConclusionsDSCR9 was highly correlated with genes that were known as important factors in the developments and functions of nervous system, indicating that DSCR9 may regulate neurological proteins regarding Down syndrome and other neurological-related diseases. The pipeline can be properly adjusted to other applications.Electronic supplementary materialThe online version of this article (10.1186/s40246-018-0133-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.