Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner.
Information on CYP-chemical interactions was comprehensively explored by a text-mining technique, to confirm our previous structure-activity relationship model for CYP substrates (Yamashita et al. J. Chem. Inf. Model. 2008, 48, 364-369). The text-mining technique is based on natural language processing and can extract chemical names and their interaction patterns according to sentence context. After chemicals were automatically extracted and classified into CYP substrates, inhibitors, and inducers, 709 substrates were retrieved from the PubChem database and categorized as 216, 145, 136, 217, 156, and 379 substrates for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4, respectively. Although the previous classification model was developed using data from only 161 compounds, the model classified the substrates found by text-mining analysis with reasonable accuracy. This confirmed the validity of both the multi-objective classification model for CYP substrates and the text-mining procedure.
The aim of this study was to develop an in silico prediction system to assess which of 7 categories of drug transporters (organic anion transporting polypeptide [OATP] 1B1/1B3, multidrug resistance-associated protein [MRP] 2/3/4, organic anion transporter [OAT] 1, OAT3, organic cation transporter [OCT] 1/2/multidrug and toxin extrusion [MATE] 1/2-K, multidrug resistance protein 1 [MDR1], and breast cancer resistance protein [BCRP]) can recognize compounds as substrates using its chemical structure alone. We compiled an internal data set consisting of 260 compounds that are substrates for at least 1 of the 7 categories of drug transporters. Four physicochemical parameters (charge, molecular weight, lipophilicity, and plasma unbound fraction) of each compound were used as the basic descriptors. Furthermore, a greedy algorithm was used to select 3 additional physicochemical descriptors from 731 available descriptors. In addition, transporter nonsubstrates tend not to be in the public domain; we, thus, tried to compile an expert-curated data set of putative nonsubstrates for each transporter using personal opinions of 11 researchers in the field of drug transporters. The best prediction was finally achieved by a support vector machine based on 4 basic and 3 additional descriptors. The model correctly judged that 364 of 412 compounds (internal data set) and 111 of 136 compounds (external data set) were substrates, indicating that this model performs well enough to predict the specificity of transporter substrates.
Knowledge of the interactions between drugs and transporters is important for drug discovery and development as well as for the evaluation of their clinical safety. We recently developed a text-mining system for the automatic extraction of information on chemical-CYP3A4 interactions from the literature. This system is based on natural language processing and can extract chemical names and their interaction patterns according to sentence context. The present study aimed to extend this system to the extraction of information regarding chemical-transporter interactions. For this purpose, the key verb list designed for cytochrome P450 enzymes was replaced with that for known drug transporters. The performance of the system was then tested by examining the accuracy of information on chemical-P-glycoprotein (P-gp) interactions extracted from randomly selected PubMed abstracts. The system achieved 89.8% recall and 84.2% precision for the identification of chemical names and 71.7% recall and 78.6% precision for the extraction of chemical-P-gp interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.