Carbon materials derived from metal-organic frameworks (MOFs) have attracted increasing attention as anodes for energy storage. In this study, Fe, Ni-doped ZIF-8 is carbonized at high temperature to obtain bimetallic Fe and Ni modified tension -relaxed carbon (FeNi@trC). Fe and Ni have opposite structural modification effects when the metal ions are doped into the ZIF-8 dodecahedron. The obtained carbon material maintains the regular dodecahedron morphology, which means the relaxation of tension and strong thermal stability during annealing. Moreover, the presence of nickel enhances the carbonization degree and electrochemical stability of FeNi@trC, while the calcination of the tensive ZIF-8 precursor offers more defect sites. The discharge capacities of FeNi@trC materials are stable at 182.9 mAh·g-1 and 567.9 mAh·g-1 for SIB and LIB at 0.05 A·g-1. Compared with the current density of 0.05 A·g-1, the discharge capacity of SIB and LIB attenuates by 29.4% and 55.9% at 1 A·g-1, respectively, and the FeNi@trC shows good performance stability in the following cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.