Magnetic Fe3O4@poly(m-phenylenediamine) particles (Fe3O4@PmPDs) with well-defined core-shell structure were first designed for high performance Cr(VI) removal by taking advantages of the easy separation property of magnetic nanoparticles (MNPs) and the satisfactory adsorption property of polymers. Through controlling the polymerization on MNPs, directly coating was realized without the complicated premodification procedures. The particle property and adsorption mechanism were analyzed in details. Fe3O4@PmPDs exhibited tunable PmPD shell thickness from 10 to 100 nm, high magnetic (∼150 to ∼73 emu g(-1)) and facile separation property by magnet. The coating of PmPD significantly enhanced Cr(VI) adsorption capacity from 46.79 (bare MNPs) to 246.09 mg g(-1) (71.55% PmPD loading proportion), much higher than many reported composite adsorbents. The high Cr(VI) removal performance was attributed to the adsorption of Cr(VI) on protonated imino groups and the efficient reduction of Cr(VI) to Cr(III) by amine, followed by Cr(III) chelated on imino groups, which are spontaneous and endothermic. The Fe3O4@PmPDs have great potential in treating Cr(VI)-contaminated water.
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases expressed on the cell membrane that play crucial roles in both developmental and adult cells. Dysregulation of FGFRs has been implicated in a wide variety of cancers, such as urothelial carcinoma, hepatocellular carcinoma, ovarian cancer and lung adenocarcinoma. Due to their functional importance, FGFRs have been considered as promising drug targets for the therapy of various cancers. Multiple small molecule inhibitors targeting this family of kinases have been developed, and some of them are in clinical trials. Furthermore, the pan-FGFR inhibitor erdafitinib (JNJ-42756493) has recently been approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic or unresectable urothelial carcinoma (mUC). This review summarizes the structure of FGFR, especially its kinase domain, and the development of small molecule FGFR inhibitors.
Maturation of dendritic cells (DCs) is critical for initiation of immune responses and is regulated by various stimulatory signals. We assessed the role of galectin (Gal)-9 in DC maturation. Culture of immature DCs with exogenous Gal-9 markedly increased the surface expression of CD40, CD54, CD80, CD83, CD86, and HLA-DR in a dose-dependent manner, although Gal-9 had no or little effect on differentiation of human monocytes into immature DCs. Gal-9-treated DCs secreted IL-12 but not IL-10, and they elicited the production of Th1 cytokines (IFN-γ and IL-2) but not that of the Th2 cytokines (IL-4 and IL-5) by allogeneic CD4+ T cells. These effects of Gal-9 on immature DCs were not essentially dependent on its lectin properties, given that they were inhibited only slightly by lactose. We further found that a Gal-9 mutant that lacks β-galactoside binding activity reproduced the above activities and that an anti-Gal-9 mAb suppressed them. Gal-9 induced phosphorylation of the MAPK p38 and ERK1/2 in DCs, and an inhibitor of p38 signaling, but not inhibitors of signaling by either ERK1/2 or PI3K, blocked Gal-9-induced up-regulation of costimulatory molecule expression and IL-12 production. These findings suggest that Gal-9 plays a role not only in innate immunity but also in acquired immunity by inducing DC maturation and promoting Th1 immune responses.
We conclude that Gal-9 inhibits allergic inflammation of the airway and AHR by modulating CD44-dependent leukocyte recognition of the extracellular matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.