Bakuchiol (BAK) is an abundant natural compound. BAK has been reported to have several biological activities such as anticancer, antiaging, anti-inflammatory, and prevention of bone loss. However, it causes hepatotoxicity, the mechanism of which is not known. In this study, we explored the mechanism of BAK hepatotoxicity by treating rats with 52.5 mg/kg and 262.5 mg/kg of BAK, administered continuously for 6 weeks. We examined the liver pathology and biochemical composition of bile to determine toxicity. Mechanisms of BAK hepatotoxicity were analyzed based on relative and absolute quantification (iTRAQ) protein equivalent signatures and validated in vitro using LO2 cells. iTRAQ analysis revealed 281 differentially expressed proteins (DEPs) in liver tissue of the BAK-treated group, of which 215 were upregulated, and 66 were downregulated. GO and KEGG enrichment analysis revealed that bile secretion, lipid metabolism, and cytochrome P450 signaling pathways were enriched in DEPs. Among them, peroxisome proliferator-activated receptor α (PPARα), farnesoid X receptor (FXR), and cholesterol 7α-hydroxylase (CYP7a1) were closely associated with the development and progression of BAK-induced hepatic metabolic dysfunction and abnormal bile metabolism. This study shows that BAK can induce hepatotoxicity through multiple signaling pathways.
Objective. Biheimaer (BHM) is a hospital formulation for clinical treatment of dyspepsia and acid reflux, based on Compatibility Theory of Traditional Chinese Medicine. This study anticipated to elucidate the molecular mechanism of BHM against Functional dyspepsia via combined network pharmacology prediction with experimental verification. Methods. Based on network pharmacology, the potential active components and targets of BHM in the treatment of functional dyspepsia were explored by prediction and molecular docking technology. The results of protein–protein interaction analysis, functional annotation, and pathway enrichment analysis further refined the main targets and pathways. The molecular mechanism of BHM improving functional dyspepsia mice induced by L-arginine + atropine was verified on the basis of network pharmacology. Results. In this study, 183 effective compounds were screened from BHM; moreover, 1007 compound-related predicted targets and 156 functional dyspepsia-related targets were found. The results of enrichment analysis and in vivo experiments showed that BHM could regulate intestinal smooth muscle contraction to play a therapeutic role in functional dyspepsia by reducing the expression of NOS3, SERT, TRPV1, and inhibiting the inflammatory cytokine (IL-1β, TNF-α) to intervene the inflammatory response in mice. Conclusions. This study revealed the molecular biological mechanisms of the Traditional Chinese Medicine formulation of BHM in functional dyspepsia by network pharmacology and experimental verification, meanwhile provided scientific support for subsequent clinical medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.