Mechanisms for increased antibody production in batch cultures of murine hybridoma cells in response to hyperosmotic stress were investigated. The rates of immunoglobulin transcription and protein translation and posttranslational processing were determined in control and hyperosmotic cultures. Changes in immunoglobulin transcription played a minor role in the increase in antibody production in response to hyperosmotic stress. In contrast, protein translation increased substantially in response to osmotic stress. However, the antibody translation rate remained relatively constant after correcting for the overall increase in protein translation. Cell size and intracellular antibody pool also increased in response to hyperosmolarity. The intracellular antibody pool increased proportionately with the increase in cell size, indicating that hyperosmotic cultures do not selectively increase their intracellular antibody population. Changes in cell cycle distribution in response to osmotic stress and the relationship between the cell cycle and antibody production were also evaluated. Hyperosmotic stress altered the cell cycle distribution, increasing the fraction of the cells in S-phase. However, this change was uncorrelated with the increase in antibody production rate. Immunoglobulin degradation was relatively low ( approximately 15%) and remained largely unchanged in response to hyperosmotic stress. There was no apparent increase in immunoglobulin stability as a result of osmotic stress. Antibody secretion rates increased approximately 50% in response to osmotic stress, with a commensurate increase in the antibody assembly rate. The rate of transit through the entire posttranslational processing apparatus increased, particularly for immunoglobulin light chains. The levels of endoplasmic reticulum chaperones did not increase as a fraction of the total cellular protein but were increased on a per cell basis as the result of an increase in total cellular protein. A difference in the interactions between the immunoglobulin heavy chains and BiP/GRP78 was observed in response to hyperosmotic conditions. This change in interaction may be correlated with the decrease in transit time through the posttranslational pathways. The increase in the posttranslational processing rate appears to be commensurate with the increase in antibody production in response to hyperosmotic stress.
Surgical resection is the primary mode for glioma treatment, while gross total resection is difficult to achieve, due to the invasiveness of the gliomas. Meanwhile, the tumor-resection region is closely related to survival rate and life quality. Therefore, we developed optical/magnetic resonance imaging (MRI) bifunctional targeted micelles for glioma so as to delineate the glioma location before and during operation. The micelles were constructed through encapsulation of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) with polyethylene glycol- block -polycaprolactone (PEG- b -PCL) by using a solvent-evaporation method, and modified with a near-infrared fluorescent probe, Cy5.5, in addition to the glioma-targeting ligand lactoferrin (Lf). Being encapsulated by PEG- b -PCL, the hydrophobic SPIONs dispersed well in phosphate-buffered saline over 4 weeks, and the relaxivity ( r 2 ) of micelles was 215.4 mM −1 ·s −1 , with sustained satisfactory fluorescent imaging ability, which might have been due to the interval formed by PEG- b -PCL for avoiding the fluorescence quenching caused by SPIONs. The in vivo results indicated that the nanoparticles with Lf accumulated efficiently in glioma cells and prolonged the duration of hypointensity at the tumor site over 48 hours in the MR image compared to the nontarget group. Corresponding with the MRI results, the margin of the glioma was clearly demarcated in the fluorescence image, wherein the average fluorescence intensity of the tumor was about fourfold higher than that of normal brain tissue. Furthermore, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay results showed that the micelles were biocompatible at Fe concentrations of 0–100 μg/mL. In general, these optical/MRI bifunctional micelles can specifically target the glioma and provide guidance for surgical resection of the glioma before and during operation.
In order to delineate the location of the tumor both before and during operation, we developed targeted bi-functional polymeric micelles for magnetic resonance (MR) and fluorescence imaging in liver tumors. Hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) were loaded into the polymeric micelles through self-assembly of an amphiphilic block copolymer poly(ethylene glycol)-poly(ϵ-caprolactone). After, transferrin (Tf) and near-infrared fluorescence molecule Cy5.5 were conjugated onto the surface of the polymeric micelles to obtain the nanosized probe SPIO@PEG-b-PCL-Tf/Cy5.5 (SPPTC). Imaging capabilities of this nanoprobe were evaluated both in vitro and in vivo. The accumulation of SPPTC in HepG2 cells increased over SPIO@PEG-b-PCL-Cy5.5 (SPPC) by confocal microscopy. The targeted nanoprobe SPPTC possessed favorable properties on the MR and fluorescence imaging both in vitro and in vivo. The MTT results showed that the nanoprobes were well tolerated. SPPTC had the potential for pre-operation evaluation and intra-operation navigation of tumors in clinic.
Nanoparticles (NPs) are advantageous for the delivery of diagnosis agents to brain tumors. In this study, we attempted to develop an l -cysteine coated FePt (FePt-Cys) NP as MRI/CT imaging contrast agent for the diagnosis of malignant gliomas. FePt-Cys NPs were synthesized through a co-reduction route, which was characterized by transmission electron microscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and dynamic light scattering. The MRI and CT imaging ability of FePt-Cys NPs was evaluated using different gliomas cells (C6, SGH44, U251) as the model. Furthermore, the biocompatibility of the as-synthesized FePt-Cys NPs was evaluated using three different cell lines (ECV304, L929, and HEK293) as the model. The results showed that FePt-Cys NPs displayed excellent biocompatibility and good MRI/CT imaging ability, thereby indicating promising potential as a dual MRI/CT contrast agent for the diagnosis of brain malignant gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.