The performance of a CO2 double-pipe evaporator was studied through experiments and a simulation model that was established by the steady-state distribution parameter method and experimentally verified while using a CO2 transcritical water‒water heat pump system. The effects of different operating parameters on heat transfer performance were studied over a range of evaporation temperatures (−5 to 5 °C), mass velocity (100‒600 kg/m2s), and heat flux (5000‒15,000 W/m2). It was found that the dryout quality increased at a small evaporation temperature, a large mass velocity, and a small heat flux. The simulation yield means relative error (RE) of heat transfer for the evaporation temperature and that of the CO2 pressure drop for the chilled water inlet temperature were 5.21% and 3.78%, respectively. The effect of tube diameter on the performance of CO2 double-pipe evaporator is probed through simulations. At the same time, this paper defines a parameter α , which is the proportion of the pre-dryout region to the whole heat transfer region. A larger α value is desirable. A further theoretical basis is provided for designing an efficient and compact CO2 evaporator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.