Vanilloid receptor 1 (TRPV1) has been proposed to be the principal heat-responsive channel for nociceptive neurons. The skin of both rat and mouse receives major projections from primary sensory afferents that bind the plant lectin isolectin B4 (IB4). The majority of IB4-positive neurons are known to be heat-responsive nociceptors. Previous studies suggested that, unlike rat, mouse IB4-positive cutaneous afferents did not express TRPV1 immunoreactivity. Here, multiple antisera were used to confirm that mouse and rat have different distributions of TRPV1 and that TRPV1 immunoreactivity is absent in heat-sensitive nociceptors. Intracellular recording in TRPV1 Ϫ/Ϫ mice was then used to confirm that TRPV1 was not required for detecting noxious heat. TRPV1 Ϫ/Ϫ mice had more heatsensitive neurons, and these neurons had normal temperature thresholds and response properties. Moreover, in TRPV1 Ϫ/Ϫ mice, 82% of heat-responsive neurons did not express immunoreactivity for TRPV2, another putative noxious heat channel.
Background Coronavirus disease 2019 (COVID-19) is associated with a high mortality rate, especially in patients with severe illness. We conducted a systematic review and meta-analysis to assess the potential predictors of mortality in patients with COVID-19. Methods PubMed, EMBASE, the Cochrane Library, and three electronic Chinese databases were searched from December 1, 2019 to April 29, 2020. Eligible studies reporting potential predictors of mortality in patients with COVID-19 were identified. Unadjusted prognostic effect estimates were pooled using the random-effects model if data from at least two studies were available. Adjusted prognostic effect estimates were presented by qualitative analysis. Results Thirty-six observational studies were identified, of which 27 were included in the meta-analysis. A total of 106 potential risk factors were tested, and the following important predictors were associated with mortality: advanced age, male sex, current smoking status, preexisting comorbidities (especially chronic kidney, respiratory, and cardio-cerebrovascular diseases), symptoms of dyspnea, complications during hospitalization, corticosteroid therapy and a severe condition. Additionally, a series of abnormal laboratory biomarkers of hematologic parameters, hepatorenal function, inflammation, coagulation, and cardiovascular injury were also associated with fatal outcome. Conclusion We identified predictors of mortality in patients with COVID-19. These findings could help healthcare providers take appropriate measures and improve clinical outcomes in such patients.
Co and Ni based selenide nanowalls have been prepared on a conductive graphene coated nickel mesh substrate and used as electrocatalysts for hydrogen generation and oxygen evolution. The bifunctional nanowalls manifest a low driven voltage and high structural stability for overall water splitting.
Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRα3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.