Adsorption has been proven to be the most efficient method for quickly lowering the concentration of dissolved dyes in an effluent. In this regard, activated carbon is the most widely used adsorbent for removal of dyes from aqueous solution. However, the high cost of production and regeneration make it uneconomical. Therefore, inorganic adsorbents (e.g. zeolites) with high surface areas have been used as alternatives to carbon adsorbents. Microporous zeolites ZSM-5, NH 4 -Beta, MCM-22 and mesoporous materials MCM-41 have been investigated for the removal of dyes from aqueous solutions and they show effective adsorption performance. SBA-15 possesses a larger pore size and pore wall thickness than MCM-41. As a result, SBA-15 has greater potential for the adsorption of methylene blue with larger molecule size and higher hydrothermal stability than the M41S family. SBA-15 is an excellent adsorbent for methylene blue (MB), exhibiting 280 mg g −1 adsorption capacity and about 100% fading rate for MB. The adsorptive process is so fast that adsorption equilibrium is achieved in 5 min. In addition, SBA-15 can be effectively recovered by calcination and reused 10 times without significant loss in removal of MB from aqueous solution. The efficient adsorption of MB molecules onto SBA-15 was ascribed to MB adsorbed into the pore channels of SBA-15, which was confirmed by nitrogen physisorption analysis of the adsorbent before and after adsorption. The long reuse life of the adsorbent suggests a high potential for application in industry.
Abstract:The Songnen Plain of the Northeast China is one of the three largest soda saline-alkali regions worldwide. To better understand soil alkalinization and salinization in this important agricultural region, it is vital to explore the distribution and variation of soil alkalinity and salinity in space and time. This study examined soil properties and identified the variables to extract soil alkalinity and salinity via physico-chemical, statistical, spectral, and image analysis. The physico-chemical and statistical results suggested that alkaline soils, coming from the main solute Na 2 CO 3 and NaHCO 3 in parent rocks, characterized the study area. The pH and electric conductivity (EC ) were correlated with both narrow band and broad band reflectance. For soil pH, the sensitive bands were in short wavelength (VIS) and the band with the highest correlation was 475 nm (r = 0.84). For soil EC, the sensitive bands were also in VIS and the band with the highest correlation was 354 nm (r = 0.84). With the stepwise regression, it was found that the pH was sensitive to reflectance of OLI band 2 and band 6, while the EC was only sensitive to band 1. The R 2 Adj (0.73 and 0.72) and root mean square error (RMSE) (0.98 and 1.07 dS/m) indicated that, the two stepwise regression models could estimate soil alkalinity and salinity with a considerable accuracy. Spatial distributions of soil alkalinity and salinity were mapped from the OLI image with the RMSE of 1.01 and 0.64 dS/m, respectively. Soil alkalinity was related to salinity but most soils in the study area were non-saline soils. The area of alkaline soils was 44.46% of the basin. Highly alkaline soils were close to the Zhalong wetland and downstream of rivers, which could become a severe concern for crop productivity in this area.
It is necessary to estimate heavy metal concentrations and risk in surface water for understanding the heavy metal contaminations and for sustainable protection of ecosystems and human health. To investigate the anthropogenic contribution of heavy metal accumulation surrounding an industrial city in China, the concentrations of six heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), and cadmium (Cd) were examined; from four different regions of Daqing in autumn 2011 and winter 2012. The results showed heavy metals distributed in the industrial area at concentrations relatively higher than those in other three areas, while concentrations in the farming area and the protected area were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and As, Cu, Pb and Cr were lower than the cutoff values for the Class I water quality that was set as the highest standard to protect the national nature reserves. While Hg and As of lakes in industry region had a higher level than those in the agriculture and landscape water, the lowest allowed. The concentrations of all the heavy metals in winter were higher than in the autumn. Cu had a higher ecological risks level to freshwater organisms. The discharge of urban sewage and industrial wastewater might be a major pollutant source, thus these sources should identified before remediation efforts. Efforts are needed to protect the lakes from pollution and also to reduce environmental health risks. This study and the valuable data will pave the way for future research on these Lakes in Daqing.
A total of 271 sediments samples from the Zhalong Wetland were analyzed for concentration and distribution of Hg, Cd, As, Cu, Pb, Zn, Cr, and Zn; their speciation according to the modified European Community Bureau of Reference sequential extraction procedures and their ecological risk based on Lars Hakanson's potential ecological risk assessment and risk assessment code were made. The results can be summarized as the followings: (1) Concentrations of all metals measured were above soil background values of Songnen Plain, and their spatial distributions were distinctly different. The concentrations of metals (except Pb) were high in the east, followed by the north, and were relatively low in the core zone and south. The concentration of Pb was high in the north, south, and west, compared with low concentration in the core zone and east. (2) The dominant proportion of Pb, Zn, and Cr was in the residual fraction, suggesting that they were environmental stable. The concentrations of Cu and As in the reducible fraction, the concentration of Cd in the acidsoluble fraction, and the concentration of Hg in the oxidizable fraction were relatively high, indicating they had greater environmental effects. (3) The evaluation of the ecological risk showed that Cd, Hg, and As had relatively high ecological risk index, especially the ecological risk of Cd should be paid attention to. In general, the ecological risk of the heavy metals and metalloid by zone was experimental zone [ buffering zone [ ecological tourism zone [ core zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.