This paper reviewed major remote sensing image classification techniques, including pixel-wise, sub-pixel-wise, and object-based image classification methods, and highlighted the importance of incorporating spatio-contextual information in remote sensing image classification. Further, this paper grouped spatio-contextual analysis techniques into three major categories, including 1) texture extraction, 2) Markov random fields (MRFs) modeling, and 3) image segmentation and object-based image analysis. Finally, this paper argued the necessity of developing geographic information analysis models for spatial-contextual classifications using two case studies.
Abstract. Spatiotemporal variations of dissolved organic carbon (DOC) and inorganic carbon (DIC) in 26 waters across the semi-humid/semi-arid Songnen Plain, China, were examined with data collected during and brackish (n = 12) waters were grouped according to electrical conductivity (threshold = 1000 µS cm −1 ). Significant differences in the average DOC and DIC concentrations were observed between the fresh (5.63 mg L −1 , 37.39 mg L −1 ) and the brackish waters (15.33 mg L −1 , 142.93 mg L −1 ). Colored dissolved organic matter (CDOM) and DOC concentrations were mainly controlled by climatic-hydrologic conditions. The investigation indicated that the outflow conditions in the semi-arid region had condensed effects on the dissolved carbon, resulting in close relationships between salinity vs. DOC (R 2 = 0.66), and salinity vs. DIC (R 2 = 0.94). An independent data set collected in May 2012 also confirmed this finding (DOC: R 2 = 0.79, DIC: R 2 = 0.91), highlighting the potential of quantifying DOC and DIC via salinity measurements for waters dispersed in the plain. Indices based on the CDOM absorption spectra (e.g., the DOC-specific CDOM absorption (SUVA 254 ), absorption ratio a 250 : a 365 (E 250 : E 365 ) and the spectral slope ratio (Sr, S 275−295 /S 350−400 )) were applied to characterize CDOM composition and quality. Our results indicate that high molecular weight CDOM fractions are more abundant in the fresh waters than the brackish waters.
Abstract. The seasonal characteristics of fluorescent components in chromophoric dissolved organic matter (CDOM) for lakes in the semiarid region of Northeast China were examined by excitation–emission matrix (EEM) spectra and parallel factor analysis (PARAFAC). Two humic-like (C1 and C2) and protein-like (C3 and C4) components were identified using PARAFAC. The average fluorescence intensity of the four components differed under seasonal variation from June and August 2013 to February and April 2014. Components 1 and 2 exhibited a strong linear correlation (R2 = 0.628). Significantly positive linear relationships between CDOM absorption coefficients a(254) (R2 = 0.72, 0.46, p < 0.01), a(280) (R2 = 0.77, 0.47, p < 0.01), a(350) (R2 = 0.76, 0.78, p < 0.01) and Fmax for two humic-like components (C1 and C2) were exhibited, respectively. A significant relationship (R2 = 0.930) was found between salinity and dissolved organic carbon (DOC). However, almost no obvious correlation was found between salinity and EEM–PARAFAC-extracted components except for C3 (R2 = 0.469). Results from this investigation demonstrate that the EEM–PARAFAC technique can be used to evaluate the seasonal dynamics of CDOM fluorescent components for inland waters in the semiarid regions of Northeast China, and to quantify CDOM components for other waters with similar environmental conditions.
With rapid population growth and rural to-urban migration in many Chinese cities, a large amount of natural lands have been converted to urban and agricultural lands recently. During this process of land conversion, economic development and quality of life improvement are considered as major goals, and their influences on ecological systems have often been neglected. The degradation of natural ecological systems due to land use change, however, has become severe,and may require immediate attentions from urban planners and local governments. Taking HaDaQi industrial corridor, Heilongjiang Province, China,as a case study area, this paper examined the trend of land use changes during 1990–2005, and quantified their influences on natural eco system service values. In particular, this study applied two major valuation methods, and examined whether different valuation methods generate significantly different results. Analysis of results suggests that human dominated land uses (e.g., urban and agriculture)have expanded rapidly at the cost of natural lands (e.g., wetlands and forest). Due to these land use changes, the total ecosystem service value decreased 29% (2.26% annually) from 1990 to 2005 when the first method was applied, and this rate is estimated to be 15.7% (1.13% annually)with the second approach. Moreover, the annual rate of ecosystem service value decline during 2000–2005 is about four times higher than that in 1990–2000 with both methods, suggesting much more severe ecosystem degradation during 2000–2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.