Recently, researchers set an ambitious goal of conducting speaker recognition in unconstrained conditions where the variations on ambient, channel and emotion could be arbitrary. However, most publicly available datasets are collected under constrained environments, i.e., with little noise and limited channel variation. These datasets tend to deliver over optimistic performance and do not meet the request of research on speaker recognition in unconstrained conditions.In this paper, we present CN-Celeb, a large-scale speaker recognition dataset collected 'in the wild'. This dataset contains more than 130, 000 utterances from 1, 000 Chinese celebrities, and covers 11 different genres in real world. Experiments conducted with two state-of-the-art speaker recognition approaches (i-vector and x-vector) show that the performance on CN-Celeb is far inferior to the one obtained on VoxCeleb, a widely used speaker recognition dataset. This result demonstrates that in real-life conditions, the performance of existing techniques might be much worse than it was thought. Our database is free for researchers and can be downloaded from http://project.cslt.org.
The NIPS 2018 Adversarial Vision Challenge is a competition to facilitate measurable progress towards robust machine vision models and more generally applicable adversarial attacks. This document is an updated version of our competition proposal that was accepted in the competition track of 32nd Conference on Neural Information Processing Systems (NIPS 2018).
NIPS 2017 Competition on adversarial attacks and defenses.Co-organised by Alexey Kurakin. This competition pitted models against attacks but only indirectly: attacks were unable to query the models and hence had to device generic adversarial examples that would work against as many models as possible. Devising defenses against such unspecific transferbased attacks is much simpler than becoming robust against model-specific attacks.
Gradient-based Monte Carlo sampling algorithms, like Langevin dynamics and Hamiltonian Monte Carlo, are important methods for Bayesian inference. In large-scale settings, full-gradients are not affordable and thus stochastic gradients evaluated on mini-batches are used as a replacement. In order to reduce the high variance of noisy stochastic gradients, Dubey et al. [2016] applied the standard variance reduction technique on stochastic gradient Langevin dynamics and obtained both theoretical and experimental improvements. In this paper, we apply the variance reduction tricks on Hamiltonian Monte Carlo and achieve better theoretical convergence results compared with the variance-reduced Langevin dynamics. Moreover, we apply the symmetric splitting scheme in our variance-reduced Hamiltonian Monte Carlo algorithms to further improve the theoretical results. The experimental results are also consistent with the theoretical results. As our experiment shows, variance-reduced Hamiltonian Monte Carlo demonstrates better performance than variance-reduced Langevin dynamics in Bayesian regression and classification tasks on real-world datasets. † denotes equal contribution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.