Synthetic micro-nanomotors fueled by glucose are highly desired for numerous practical applications due to the biocompatibility of their required fuel. However, currently all of the glucose-fueled micro/nanomotors are based on enzyme-catalytic driven mechanisms, which usually suffer from strict operation conditions and weak propulsion characteristics that greatly limit their applications. Here, we report a highly efficient glucose-fueled cuprous oxide@N doped carbon nanotube
Anisotropic molecular alignment occurs ubiquitously and often heterogeneously in three dimensions (3D). However, conventional imaging approaches based on polarization can map only molecular orientation projected onto the 2D polarization plane. Here, an algorithm converts conventional polarization-controlled infrared (IR) hyperspectral data into images of the 3D angles of molecular orientations. The polarization-analysis algorithm processes a pair of orthogonal IR transition-dipole modes concurrently; in contrast, conventional approaches consider individual IR modes separately. The orthogonal-pair polarization IR (OPPIR) method, introduced theoretically but never demonstrated experimentally, was used to map the 3D orientation angles and the order parameter of the local orientational distribution of polymer chains in a poly(ε-caprolactone) film. The OPPIR results show that polymer chains in the semicrystalline film are aligned azimuthally perpendicular to the radial direction of a spherulite and axially tilted from the film normal direction. This newly available information on the local alignments in continuously distributed molecules helps to understand the molecular-level structure of highly anisotropic and spatially heterogeneous materials.
Oxygen vacancy-based Cu2+1O micromotors with highly enhanced propulsion in biocompatible fuels (pure water and super low concentration tannic acid) under low energy multispectral light (blue to red).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.