BackgroundThe phytohormone auxin mediates a stunning array of plant development through the functions of AUXIN RESPONSE FACTORs (ARFs), which belong to transcription factors and are present as a protein family comprising 10–43 members so far identified in different plant species. Plant development is also subject to regulation by TRANSPARENT TESTA GLABRA (TTG) proteins, such as NtTTG2 that we recently characterized in tobacco Nicotiana tabacum. To find the functional linkage between TTG and auxin in the regulation of plant development, we performed de novo assembly of the tobacco transcriptome to identify candidates of NtTTG2-regulated ARF genes.ResultsThe role of NtTTG2 in tobacco growth and development was studied by analyzing the biological effects of gene silencing and overexpression. The NtTTG2 gene silencing causes repressive effects on vegetative growth, floral anthocyanin synthesis, flower colorization, and seed production. By contrast, the plant growth and development processes are promoted by NtTTG2 overexpression. The growth/developmental function of NtTTG2 associates with differential expression of putative ARF genes identified by de novo assembly of the tobacco transcriptome. The transcriptome contains a total of 54,906 unigenes, including 30,124 unigenes (54.86%) with annotated functions and at least 8,024 unigenes (14.61%) assigned to plant growth and development. The transcriptome also contains 455 unigenes (0.83%) related to auxin responses, including 40 putative ARF genes. Based on quantitative analyses, the expression of the putative genes is either promoted or inhibited by NtTTG2.ConclusionsThe biological effects of the NtTTG2 gene silencing and overexpression suggest that NtTTG2 is an essential regulator of growth and development in tobacco. The effects of the altered NtTTG2 expression on expression levels of putative ARF genes identified in the transcriptome suggest that NtTTG2 functions in relation to ARF transcription factors.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-806) contains supplementary material, which is available to authorized users.
Powdery mildew, one of devastating diseases of wheat worldwide, is caused by Erysiphe graminis f. sp. tritici, a fungal species with constant population changes, which often poses challenges in disease management with host resistance. Transgenic approaches that utilize broad-spectrum resistance may limit changes of pathogen populations and contribute to effective control of the disease. The harpin protein Hpa1, produced by the rice bacterial blight pathogen, can induce resistance to bacterial blight and blast in rice. The fragment comprising residues 10 through 42 of Hpa1, Hpa110-42, is reportedly three- to eightfold more effective than the full-length protein. This study evaluated the transgenic expression of the Hpa110-42 gene for resistance to powdery mildew in wheat caused by E. graminis f. sp. tritici. Nine Hpa110-42 transgenic wheat lines were generated. The genomic integration of Hpa110-42 was confirmed, and expression of the transgene was detected at different levels in the individual transgenic lines. Following inoculation with the E. graminis f. sp. tritici isolate Egt15 in the greenhouse, five transgenic lines had significantly higher levels of resistance to powdery mildew compared with nontransformed plants. Thus, transgenic expression of Hpa110-42 conferred resistance to one isolate of E. graminis f. sp. tritici in wheat in the greenhouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.