Transcripts regulated by the yeast nonsense-mediated and 5' to 3' mRNA decay pathways were identified by expression profiling of wild-type, upf1Delta, nmd2Delta, upf3Delta, dcp1Delta, and xrn1Delta cells. This analysis revealed that inactivation of Upf1p, Nmd2p, or Upf3p has identical effects on global RNA accumulation; inactivation of Dcp1p or Xrn1p exhibits both common and unique effects on global RNA accumulation but causes upregulation of only a small fraction of transcripts; and the majority of transcripts upregulated in upf/nmd strains are also upregulated to similar extents in dcp1Delta and xrn1Delta strains. Our results define the core transcripts regulated by NMD, identify several novel structural classes of NMD substrates, demonstrate that nonsense-containing mRNAs are primarily degraded by the 5' to 3' decay pathway even in the absence of functional NMD, and indicate that 3' to 5' decay, not 5' to 3' decay, may be the major mRNA decay activity in yeast cells.
Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.The specific interaction of RNA and protein plays vital roles in RNA regulation including splicing, localization, translation, and degradation. Such recognition may be directed toward unstructured RNA requiring discrimination of RNA sequences, folded RNA motifs, or some combination of sequence and structural specificity (1). Members of the PUF 2 protein family (named after Drosophila Pumilio and Caenorhabditis elegans fem-3 mRNA-binding factor (FBF)) are sequence-specific RNA-binding proteins that regulate networks of mRNAs encoding proteins of related function (2-7). PUF proteins generally recognize the 3Ј-UTR of their target mRNAs to control the mRNA stability and translation (2-7).The RNA-binding domain of PUF proteins, known as the Pumilio homology domain (PUM-HD) or PUF domain, can bind to unstructured RNA sequences in a distinct fashion. The PUF domain of human Pumilio 1 contains eight PUM repeats, each containing three ␣-helices packed together in a curved structure (8 -10). RNA is bound as an extended strand to the concave surface of the PUF domain with the bases contacted by protein side chains. In general, each PUM repeat recognizes a single RNA base through the second helix (␣2) in an antiparallel arrangement, i.e. nucleotides 1-8 are recognized by PUF repeats 8 -1, respectively. The ␣2 helices of PUM repeats contain a 5-residue sequence, designated here as 12XX5, where the side chain at position 2 stacks with the recognized base and the side chains at positions 1 and 5 recognize the edge of the base (8, 11) (see Fig. 1A). Specific residues at these positions direct the base recognition properties of the repeat. This PUF-RNA recognition code makes it possible to modify a PUM repeat to bind a particular RNA base, producing a designed PUF domain that specifically recognizes a given 8-nucleotide RNA target. Such de novo designed RNA binders have been used to track RNA local...
Autoregulatory loops often provide precise control of the level of expression of specific genes that encode key regulatory proteins. Here we have defined a pathway by which Yra1p, a yeast mRNA export factor, controls its own expression. We show that YRA1 exon 1 sequences in cis and Yra1p in trans inhibit YRA1 pre-mRNA splicing and commit the pre-mRNA to nuclear export. Mex67p and Crm1p jointly promote YRA1 pre-mRNA export, and once in the cytoplasm, the pre-mRNA is degraded by a 5' to 3' decay mechanism that is dependent on the decapping activator Edc3p and on specific sequences in the YRA1 intron. These results illustrate how common steps in the nuclear processing, export, and degradation of a transcript can be uniquely combined to control the expression of a specific gene and suggest that Edc3p-mediated decay may have additional regulatory functions in eukaryotic cells.
G protein-coupled receptors (GPCRs) and their downstream signaling cascades contribute to most physiological processes and a variety of human diseases. Isolating the effects of GPCR activation in an in vivo experimental setting is challenging as exogenous ligands have off-target effects and endogenous ligands constantly modulate the activity of native receptors. Highly specific designer drug-designer receptor complexes are a valuable tool for elucidating the effects of activating particular receptors and signaling pathways within selected cell types in vivo. In this study, we describe a generic protocol for the directed molecular evolution of designer receptors exclusively activated by designer drugs (DREADDs). First, the yeast system is validated with the template receptor. Second, a mutant library is generated by error-prone PCR. Third, the library is screened by drug-dependent yeast growth assays. Mutants exhibiting the desired properties are selected for further rounds of mutagenesis or for characterization in mammalian systems. In total, these steps should take 6-8 weeks of experimentation and should result in the evolution of a receptor to be activated by the chosen ligand. This protocol should help improve the experimental targeting of select cell populations.
Aim: To investigate the immunomodulatory effects of andrographolide on both innate and adaptive immune responses. Methods: Andrographolide (10 µg/mL in vitro or 1 mg/kg in vivo) was used to modulate LPS-induced classical activated (M1) or IL-4-induced alternative activated (M2) macrophages in vitro and humor immune response to HBsAg in vivo. Cytokine gene expression profile (M1 vs M2) was measured by real-time PCR, IL-12/IL-10 level was detected by ELISA, and surface antigen expression was evaluated by flow cytometry, whereas phosphorylation level of ERK 1/2 and AKT was determined by Western blot. The level of anti-HBs antibodies in HBsAg immunized mice was detected by ELISA, and the number of HBsAg specific IL-4-producing splenocyte was enumerated by ELISPOT. Results: Andrographolide treatment in vitro attenuated either LPS or IL-4 induced macrophage activation, inhibited both M1 and M2 cytokines expression and decreased IL-12/IL-10 ratio (the ratio of M1/M2 polarization). Andrographolide down-regulated the expression of mannose receptor (CD206) in IL-4 induced macrophages and major histocompability complex/costimulatory molecules (MHC I, CD40, CD80, CD86) in LPS-induced macrophages. Correspondingly, anti-HBs antibody production and the number of IL-4-producing splenocytes were reduced by in vivo administration of andrographolide. Reduced phosphorylation levels of ERK1/2 and AKT were observed in macrophages treated with andrographolide. Conclusion: Andrographolide can modulate the innate and adaptive immune responses by regulating macrophage phenotypic polarization and Ag-specific antibody production. MAPK and PI3K signaling pathways may participate in the mechanisms of andrographolide regulating macrophage activation and polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.