Motivation: Systematic dissection of the ubiquitylation proteome is emerging as an appealing but challenging research topic because of the significant roles ubiquitylation play not only in protein degradation but also in many other cellular functions. High-throughput experimental studies using mass spectrometry have identified many ubiquitylation sites, primarily from eukaryotes. However, the vast majority of ubiquitylation sites remain undiscovered, even in well-studied systems. Because mass spectrometry-based experimental approaches for identifying ubiquitylation events are costly, time-consuming and biased toward abundant proteins and proteotypic peptides, in silico prediction of ubiquitylation sites is a potentially useful alternative strategy for whole proteome annotation. Because of various limitations, current ubiquitylation site prediction tools were not well designed to comprehensively assess proteomes. Results: We present a novel tool known as UbiProber, specifically designed for large-scale predictions of both general and species-specific ubiquitylation sites. We collected proteomics data for ubiquitylation from multiple species from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates the information from key positions and key amino acid residues. Cross-validation tests reveal that UbiProber achieves some improvement over existing tools in predicting species-specific ubiquitylation sites. Moreover, independent tests show that UbiProber improves the areas under receiver operating characteristic curves by $15% by using the Combined model. Availability: The UbiProber server is freely available on the web at
Protein methylation is predominantly found on lysine and arginine residues, and carries many important biological functions, including gene regulation and signal transduction. Given their important involvement in gene expression, protein methylation and their regulatory enzymes are implicated in a variety of human disease states such as cancer, coronary heart disease and neurodegenerative disorders. Thus, identification of methylation sites can be very helpful for the drug designs of various related diseases. In this study, we developed a method called PMeS to improve the prediction of protein methylation sites based on an enhanced feature encoding scheme and support vector machine. The enhanced feature encoding scheme was composed of the sparse property coding, normalized van der Waals volume, position weight amino acid composition and accessible surface area. The PMeS achieved a promising performance with a sensitivity of 92.45%, a specificity of 93.18%, an accuracy of 92.82% and a Matthew’s correlation coefficient of 85.69% for arginine as well as a sensitivity of 84.38%, a specificity of 93.94%, an accuracy of 89.16% and a Matthew’s correlation coefficient of 78.68% for lysine in 10-fold cross validation. Compared with other existing methods, the PMeS provides better predictive performance and greater robustness. It can be anticipated that the PMeS might be useful to guide future experiments needed to identify potential methylation sites in proteins of interest. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx.
Post-translational lysine methylation and acetylation are two major modifications of lysine residues. They play critical roles in various biological processes, especially in gene regulation. Identification of protein methylation and acetylation sites would be a foundation for understanding their modification dynamics and molecular mechanism. This work presents a method called PLMLA that incorporates protein sequence information, secondary structure and amino acid properties to predict methylation and acetylation of lysine residues in whole protein sequences. We apply an encoding scheme based on grouped weight and position weight amino acid composition to extract sequence information and physicochemical properties around lysine sites. The prediction accuracy for methyllysine and acetyllysine are 83.02% and 83.08%, respectively. Feature analysis reveals that methyllysine is likely to occur at the coil region and acetyllysine prefers to occur at the helix region of protein. The upstream residues away from the central site may be close to methylated lysine in three-dimensional structure and have a significant influence on methyllysine, while the positively charged residues may have a significant influence on acetyllysine. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PLMLA.aspx.
Protein lysine acetylation is a type of reversible post-translational modification that plays a vital role in many cellular processes, such as transcriptional regulation, apoptosis and cytokine signaling. To fully decipher the molecular mechanisms of acetylation-related biological processes, an initial but crucial step is the recognition of acetylated substrates and the corresponding acetylation sites. In this study, we developed a position-specific method named PSKAcePred for lysine acetylation prediction based on support vector machines. The residues around the acetylation sites were selected or excluded based on their entropy values. We incorporated features of amino acid composition information, evolutionary similarity and physicochemical properties to predict lysine acetylation sites. The prediction model achieved an accuracy of 79.84% and a Matthews correlation coefficient of 59.72% using the 10-fold cross-validation on balanced positive and negative samples. A feature analysis showed that all features applied in this method contributed to the acetylation process. A position-specific analysis showed that the features derived from the critical neighboring residues contributed profoundly to the acetylation site determination. The detailed analysis in this paper can help us to understand more of the acetylation mechanism and can provide guidance for the related experimental validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.