The electrocatalytic conversion of CO2 waste into liquid fuels is one of the most promising approaches to contribute to carbon neutrality and sustainable energy cycles. Designing and screening efficient electrocatalysts to simultaneously reduce the overpotential required for the CO2 reduction reaction (CO2RR), enhancing product selectivity and current density, still remains challenging. The high concentration of S vacancies in sulfides that can serve as active sites offers the possibility to address these challenges. Here, this study deciphers the positive roles of S vacancies in boosting the adsorption and activation of CO2 by modulating the local electronic structure through theoretical simulations on the In4SnS8 platform. The comparison experiments confirm that sulfides with a high concentration of intrinsic S vacancies are more competitive in selectivity and activity. Afterward, the post-processing heating desulfurization method is employed to create more abundant artificial S vacancies to further verify its effectiveness. The HCOOH Faradaic efficiency (FE) of the post-processed V-In4SnS8-350 with both intrinsic and artificial S vacancies is as high as 91%, which is much higher than 65% for pristine In4SnS8 with only intrinsic S vacancies. Meanwhile, the abundant artificial S vacancies not only upgrade the HCOOH yield from 2.2 to 14.0 mmol·h–1·cm–2 but also optimize the bias potential with the highest FE from −1.3 to −1.0 VRHE. These results highlight the effectiveness triggered by intrinsic and artificial S vacancies in enhancing the current density and lowering the optimal bias potential window, as well as improving the HCOOH selectivity. This work not only provides a sound guideline for the development of advanced sulfide semiconductor electrocatalysts but also renders insightful information on multifunctional S vacancies in the CO2RR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.