Research shows that certain antihypertensives taken during midlife confer Alzheimer’s disease (AD) related benefits in later life. We conducted a clinical trial to evaluate the extent to which the angiotensin converting enzyme inhibitor (ACE-I), ramipril, affects AD biomarkers including CSF amyloid β levels (Aβ) and ACE activity, arterial function and cognition in participants with a parental history of AD. This four month randomized, double-blind, placebo-controlled, pilot clinical trial evaluated the effects of ramipril, a blood-brain-barrier (BBB) crossing ACE-I, in cognitively healthy individuals with mild, or Stage I hypertension. Fourteen participants were stratified by gender and apolipoprotein E ε4 (APOE ε4) status and randomized to receive 5mg of ramipril or matching placebo daily. Participants were assessed at baseline and month 4 on measures of CSF Aβ1–42 and ACE activity, arterial function and cognition. Participants were middle-aged (mean 54yrs) highly educated (mean 15.4yrs), and included 50% men and 50% APOEε4 carriers. While results did not show a treatment effect on CSF Aβ1–42 (p=0.836), data revealed that ramipril can inhibit CSF ACE activity (p=0.009) and improve blood pressure (BP), however there were no differences between groups in arterial function or cognition. In this study, ramipril therapy inhibited CSF ACE activity and improved BP, but did not influence CSF Aβ1–42. While larger trials are needed to confirm our CSF Aβ results, it is possible that prior research reporting benefits of ACE-I during midlife may be attributed to alternative mechanisms including improvements in cerebral blood flow or the prevention of Angiotensin II-mediated inhibition of acetylcholine.
R/EBcoexpress is freely available and hosted on Bioconductor; a source file and vignette may be found at http://www.bioconductor.org/packages/release/bioc/html/EBcoexpress.html
Following injury, pathologically activated vocal fold fibroblasts (VFFs) can engage in disordered extracellular matrix (ECM) remodeling, leading to VF fibrosis and impaired voice function. Given the importance of scar VFFs to phenotypically appropriate in vitro modeling of VF fibrosis, we pursued detailed characterization of scar VFFs obtained from surgically injured rat VF mucosae, compared to those obtained from experimentally naïve, age-matched tissue. Scar VFFs initially exhibited a myofibroblast phenotype characterized by increased proliferation, increased Col1a1 transcription and collagen, type I synthesis, increased Acta2 transcription and α-smooth muscle actin synthesis, and enhanced contractile function. These features were most distinct at passage 1 (P1); we observed a coalescence of the scar and naïve VFF phenotypes at later passages. An empirical Bayes statistical analysis of the P1 cell transcriptome identified 421 genes that were differentially expressed by scar, compared to naïve, VFFs. These genes were primarily associated with the wound response, ECM regulation, and cell proliferation. Follow-up comparison of P1 scar VFFs and their in vivo tissue source showed substantial transcriptomic differences. Finally, P1 scar VFFs responded to treatment with hepatocyte growth factor and transforming growth factor-β3, two biologics with reported therapeutic value. Despite the practical limitations inherent to working with early passage cells, this experimental model is easily implemented in any suitably equipped laboratory and has the potential to improve the applicability of preclinical VF fibrosis research.
Vocal fold (VF) mucosal fibrosis results in substantial voice impairment and is recalcitrant to current treatments. To reverse this chronic disorder, anti-fibrotic therapies should target the molecular pathology of aberrant collagen accumulation in the extracellular matrix. We investigated the therapeutic potential of siRNA against Serpinh1 , a collagen-specific chaperone that enables cotranslational folding and assembly of procollagens in the endoplasmic reticulum. We implemented a previously validated siRNA construct, conducted transfection experiments using in vitro and in vivo rat models, and measured knockdown efficiency, dose responses, delivery strategies, and therapeutic outcomes. Liposome-mediated delivery of Serpinh1 -siRNA downregulated collagen production in naive and scar VF fibroblasts as well as naive VF mucosa; moreover, sustained Serpinh1 knockdown in fibrotic VF mucosa reversed scar-associated collagen accumulation within 4 weeks. Analysis of therapeutic effects at the transcriptome level showed evidence of cell cycle upregulation, catabolism, matrix disassembly, and morphogenesis. These findings indicate that Serpinh1 -siRNA holds potential as a molecular therapy for chronic VF mucosal fibrosis.
Candidate cell sources for vocal fold scar treatment include mesenchymal stromal cells from bone marrow (BM-MSC) and adipose tissue (AT-MSC). Mechanosensitivity of MSC can alter highly relevant aspects of their behavior, yet virtually nothing is known about how MSC might respond to the dynamic mechanical environment of the larynx. Our objective was to evaluate MSC as a potential cell source for vocal fold tissue engineering in a mechanically relevant context. A vibratory strain bioreactor and cDNA microarray were used to evaluate the similarity of AT-MSC and BM-MSC to the native cell source, vocal fold fibroblasts (VFF). Posterior probabilities for each of the microarray transcripts fitting into specific expression patterns were calculated, and the data were analyzed for Gene Ontology (GO) enrichment. Significant wound healing and cell differentiation GO terms are reported. In addition, proliferation and apoptosis were evaluated with immunohistochemistry. Results revealed that VFF shared more GO terms related to epithelial development, extracellular matrix (ECM) remodeling, growth factor activity, and immune response with BM-MSC than with AT-MSC. Similarity in glycosaminoglycan and proteoglycan activity dominated the ECM analysis. Analysis of GO terms relating to MSC differentiation toward osteogenic, adipogenic, and chondrogenic lineages revealed that BM-MSC expressed fewer osteogenesis GO terms in the vibrated and scaffold-only conditions compared to polystyrene. We did not evaluate if vibrated BM-MSC recover osteogenic expression markers when returned to polystyrene culture. Immunostaining for Ki67 and cleaved caspase 3 did not vary with cell type or mechanical condition. We conclude that VFF may have a more similar wound healing capacity to BM-MSC than to AT-MSC in response to short-term vibratory strain. Furthermore, BM-MSC appear to lose osteogenic potential in the vibrated and scaffold-only conditions compared to polystyrene, potentially attenuating the risk of osteogenesis for in vivo applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.