Conventional wireless sensor networks (WSNs) in smart home-building (SHB) are typically driven by batteries, limiting their lifespan and the maximum number of deployable units. To satisfy the energy demand for the next generation of SHB which can interconnect WSNs to make the internet of smart home-building (IoSHB), this study introduces the design and implementation of a 250 mW to 2.3 W energy harvesting device. The proposed device is dynamically autonomous owing to the integration of embedded solar photovoltaic (PV) modules and power storage through a supercapacitor (SC; 5 V, 0.47 F) capable of powering WSNs for 95 s (up to 4.11 V). The deployed device can harvest indoor and outdoor ambient light at a minimum illumination of 50 lux and a maximum illumination of 200 lux. Moreover, the proposed system supports wireless fidelity (Wi-Fi) and Bluetooth Low Energy (BLE) to do data transfer to a webserver as a complete internet of things (IoT) device. A customized android dashboard is further developed for data monitoring on a smartphone. All in all, this self-powered WSN node can interface with the users of the SHBs for displaying ambient data, which demonstrates its promising applicability and stability.
In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 °C. At the lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the highest illumination of 200 lux and ∆T = 13 °C, the device can deliver 2.13 W. The developed HEHS can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V within 17 s. In the absence of any energy sources, the designed device can back up the complete system for 92 s. The sensors can successfully send 39 data string to the webserver within this time at a two-second data transmission interval. A message queuing telemetry transport (MQTT) based IoT framework with a customised smartphone application ‘MQTT dashboard’ is developed and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor systems under fluctuating environments and energy harvesting regimes, however, utilising available atmospheric light and thermal energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.