Using gels to replace a certain amount of cement in concrete is conducive to the green concrete industry, while testing the compressive strength (CS) of geopolymer concrete requires a substantial amount of substantial effort and expense. To solve the above issue, a hybrid machine learning model of a modified beetle antennae search (MBAS) algorithm and random forest (RF) algorithm was developed in this study to model the CS of geopolymer concrete, in which MBAS was employed to adjust the hyperparameters of the RF model. The performance of the MBAS was verified by the relationship between 10-fold cross-validation (10-fold CV) and root mean square error (RMSE) value, and the prediction performance of the MBAS and RF hybrid machine learning model was verified by evaluating the correlation coefficient (R) and RMSE values and comparing with other models. The results show that the MBAS can effectively tune the performance of the RF model; the hybrid machine learning model had high R values (training set R = 0.9162 and test set R = 0.9071) and low RMSE values (training set RMSE = 7.111 and test set RMSE = 7.4345) at the same time, which indicated that the prediction accuracy was high; NaOH molarity was confirmed as the most important parameter regarding the CS of geopolymer concrete, with the importance score of 3.7848, and grade 4/10 mm was confirmed as the least important parameter, with the importance score of 0.5667.
This study is aiming at the nonlinear mapping relationship between the groundwater level and its influencing factors. Through the design and calculation process of matlab7 platform, taking the monitoring wells distributed in an open-pit mining area as an example, the short-term prediction of groundwater dynamics in the study area is carried out by using BP neural network model and BP neural network model based on genetic algorithm. Root mean squared error (RMSE), Mean absolute percent-age error (MAPE) and Nash–Sutcliffe efficiency (NSE) are used coefficients,, and the results were compared with BP neural network and stepwise regression model. From the results of the comparative analysis, the genetic algorithm optimized the BP neural network model in the training phase and the test phase, the RMSE was 0.25 and 0.36, the MAPE was 6.7 and 8.13%, and the NSE was 0.87 and 0.72, respectively. The BP neural network model optimized by genetic algorithm is obviously superior to the BP neural network model, which is an ideal prediction model for short-term groundwater level. This model can provide a prediction method for groundwater dynamic prediction and has a good application prospect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.