Electro-generated hydroxyl radicals (•OH) are of fundamental importance to the electrochemical advanced oxidation process (EAOP). Radical-specific electron spin resonance (ESR) evidence is still lacking in association with the direct electron transfer (DET) reaction of spin trap (e.g., 5,5-dimethyl-1-pyrroline-N-oxide; DMPO) and side reactions of the DMPO–OH adduct in the strongly oxidative environment offered by anodic polarization. Herein, we showed ESR identification of electro-generated •OH in EAOP based on the principle of kinetic selection. Excessive addition of a DMPO agent and fast spin trapping allowed suitable kinetic conditions to be set for effective spin trapping of electro-generated •OH and subsequent ESR identification. Otherwise, interferential triplet signals would emerge due to formation of paramagnetic dimer via dehydrogenation, DET oxidation, and dimerization reactions of the DMPO–OH adduct. The results demonstrate that •OH formation during spin-trapping on the titanium suboxide (TiSO) anode could be quantified as 47.84 ± 0.44 μM at current density of 10 mA cm–2. This value revealed a positive dependence on electrolysis time, current density, and anode potential. The effectiveness of ESR measurements was verified by the results obtained with the terephthalic acid probe. The ESR identification not only provides direct evidence for electro-generated •OH from a fundamental point of view, but also suggests a strategy to screen effective anode materials.
The electrochemical advanced oxidation process (EAOP) has gained popularity in the field of water purification. During the EAOP, it is in the boundary layer of the anode–solution interface that organic pollutants are oxidized by hydroxyl radicals (•OH) produced from water oxidation. Applying current to an anode dissipates heat to the surroundings according to Joule’s law, leading to an interfacial temperature that is much higher than that of the bulk solution, which is known as the “interfacial Joule heating” (IJH) effect. The modeling and experimental results show that the IJH effect had an inevitable consequence for the activity of •OH, rate constants, and mass transport within the boundary layer. The interfacial temperature could be increased from 25 to 70.2 °C, a value mostly doubling that of the bulk solution (33.6 °C) at the end of a 120 min electrolysis (10 mA cm–2). Correspondingly, the •OH concentration available for oxidation of organic pollutants was much lower than that calculated at a constant temperature of 25 °C probably due to H2O2 formation via •OH dimerization. The enhanced •OH diffusion resulting from strengthened molecular thermodynamic movement and decreased kinematic viscosity of the solution also drove •OH to move far from the anode surface and thus extended the maximum thickness of the boundary layer. The oxidation rate was positively correlated to the interfacial temperature, the activation energy, and the number of activated molecules, indicated by a 1.57–2.28-fold increase depending on the target organic compounds. The finding of the IJH effect prompts a re-examination of the literature based on a realistic rather than a constant temperature (e.g., 20–30 °C), the case reflected in a number of prior studies that does not exist virtually, and reconsideration of behaviors that can be attributed to the change in temperature during EAOP.
Pulsed discharge plasma (PDP) combined with charcoal (PDP-charcoal) was employed to treat dye wastewater, with methyl orange (MO) as the model pollutant. The charcoal was prepared using spent tea leaves and was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and Boehm titration to investigate the adsorption and catalytic characteristics before and after adsorption and PDP treatment. The prepared charcoal exhibited a high MO adsorption capacity, and the adsorption process followed the pseudo-second-order kinetic model and the Freundlich model. The MO decoloration efficiency reached 69.8 % within 7.5 min of treatment in the PDP-charcoal system, whereas values of 29.2 and 25.9 % were achieved in individual PDP and charcoal systems, respectively. The addition of n-butanol and H2PO4 (-) presented inhibitive effects on MO decoloration in the PDP system. However, these effects were much weaker in the PDP-charcoal system. In addition, the effects of charcoal on O3 and H2O2 formation were evaluated, and the results showed that both the O3 and H2O2 concentrations decreased in the presence of charcoal. The MO decomposition intermediates were analyzed using UV-Vis spectrometry and GC-MS. 1,4-Benzoquinone, 4-nitrophenol, 4-hydroxyaniline, and N,N'-dimethylaniline were detected. A possible pathway for MO decomposition in this system was proposed.
Low temperature presents a challenge to wastewater treatment in the winters of cold regions. In the electrochemical oxidation (EO) process, the interfacial Joule heating (IJH) effect results in interfacial temperature higher than that of bulk electrolytes, which would alleviate the negative impact of low water temperature on organic oxidation occurring within the boundary layer of the anode. This study investigated the electrochemical oxidation of the representative recalcitrant organic pollutant, i.e., phenol, p-chlorophenol (p-CP), and 2,4-dichlorophenoxyacetic acid (2,4-D) on titanium suboxide (TiSO) anode at a low water temperature (8.5 ± 1 °C). At a low current density of 2 mA cm −2 , the IJH effect was insignificant and thus had a slight impact on interfacial temperature, leading to a low-efficiency and incomplete organic removal via direct electron transfer (DET) oxidation. Increasing the current density to 20 mA cm −2 promoted the working up of the IJH effect and thus resulted in a dramatic increase in the interfacial temperature from 8.1 to 38.7 °C. This almost eliminated the negative impact of low temperature on the abatement of organic pollutants as though the low temperature of the bulk solution did not interact with interfacial reactions at all. This was indicated by the oxidation rates of 0.158 min −1 (phenol), 0.084 min −1 (p-CP), and 0.070 min −1 (2.4-D) at a temperature of 8.5 ± 1 °C, the values being almost comparable to that obtained at room temperature (23.5 ± 1 °C). Both theoretical and experimental results demonstrated that the extent to which the low-and roomtemperature cases deviated from each other was positively correlated with the activation energy of organic pollutants when reacting with • OH. The improvement of organic oxidation at low temperature should result from the compensation of the IJH effect, giving rise to higher • OH reactivity, more activated organic molecules, and enhanced mass transfer. This study may prompt new possibilities to develop an IJH effect-based electrochemical manner for decentralized water decontamination in cold regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.