In the paper, we report synthesis of lithium rich layered oxide 0.3Li 2 MnO 3 Á0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 by using an urchin-like MnO 2 as precursor. The influences of calcination temperatures on the structures and electrochemical performances of asprepared materials are systematically studied. The results show that the obtained sample can partially retain the morphology of urchin-like precursor especially at low temperature, and a higher calcination temperature helps to improve the layered structure and particle size. As lithium ion battery cathodes, the 750°C sample with the size of 100-200 nm reveals an optimal electrochemical performance. The initial discharge capacity of 234.6 mAh g -1 with high Coulombic efficiency of 84.6 % can be reached at 0.1C within 2.0-4.7 V. After 50 cycles, the capacity retention can reach 90.2 % at 0.5C. Even at high current density of 5C, the sample also shows a stable discharge capacity of 120.5 mAh g -1 . Anyways, the urchin-like MnO 2 directed route is suitable to prepare 0.3Li 2 MnO 3 Á0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 as lithium ion battery cathode.
We assessed the protective effects of Gandouling (GDL) on copper sulfate (CuSO4)-induced heart injuries in Sprague–Dawley rats, which were randomly divided into the control, CuSO4, GDL + CuSO4 and penicillamine + CuSO4 groups. The rats received intragastric GDL (400 mg/kg body weight) once per day for 42 consecutive days after 56 days of CuSO4 exposure, and penicillamine was used as a positive control. The levels of plasma inflammatory cytokines (IMA, hFABP, cTn-I and BNP) were determined using the enzyme-linked immunosorbent assay. The histopathological symptoms were evaluated using hematoxylin and eosin staining and transmission electron microscopy. To determine the underlying mechanism, Western blotting was conducted for the detection of the heme oxygenase 1 (HO-1) expression. The results revealed that GDL supplementation alleviated the histopathological symptoms of the rat heart tissue, promoted Cu excretion to attenuate impairment, and significantly decreased inflammatory cytokine levels in the plasma (p < 0.01). In addition, GDL increased the HO-1 expression in the rat hepatic tissue. The protective effect of GDL on the heart was superior to that of penicillamine. Overall, these findings indicate that GDL alleviates hepatic heart injury after a Cu overaccumulation challenge, and GDL supplements can be beneficial for patients with Wilson’s disease.
Purpose In recent years, personalized recommendations have facilitated easy access to users' personal information and historical interactions, thereby improving recommendation effectiveness. However, due to privacy risk concerns, it is essential to balance the accuracy of personalized recommendations with privacy protection. Accordingly, this paper aims to propose a neural graph collaborative filtering personalized recommendation framework based on federated transfer learning (FTL-NGCF), which achieves high-quality personalized recommendations with privacy protection. Design/methodology/approach FTL-NGCF uses a third-party server to coordinate local users to train the graph neural networks (GNN) model. Each user client integrates user–item interactions into the embedding and uploads the model parameters to a server. To prevent attacks during communication and thus promote privacy preservation, the authors introduce homomorphic encryption to ensure secure model aggregation between clients and the server. Findings Experiments on three real data sets (Gowalla, Yelp2018, Amazon-Book) show that FTL-NGCF improves the recommendation performance in terms of recall and NDCG, based on the increased consideration of privacy protection relative to original federated learning methods. Originality/value To the best of the authors’ knowledge, no previous research has considered federated transfer learning framework for GNN-based recommendation. It can be extended to other recommended applications while maintaining privacy protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.