Transcription factors (TFs) and microRNAs (miRNAs) can jointly regulate target gene expression in the forms of feed-forward loops (FFLs) or feedback loops (FBLs). These regulatory loops serve as important motifs in gene regulatory networks and play critical roles in multiple biological processes and different diseases. Major progress has been made in bioinformatics and experimental study for the TF and miRNA co-regulation in recent years. To further speed up its identification and functional study, it is indispensable to make a comprehensive review. In this article, we summarize the types of FFLs and FBLs and their identified methods. Then, we review the behaviors and functions for the experimentally identified loops according to biological processes and diseases. Future improvements and challenges are also discussed, which includes more powerful bioinformatics approaches and high-throughput technologies in TF and miRNA target prediction, and the integration of networks of multiple levels.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. The understanding of its gene expression regulation and molecular mechanisms still remains elusive. Started from experimentally verified T-ALL-related miRNAs and genes, we obtained 120 feed-forward loops (FFLs) among T-ALL-related genes, miRNAs and TFs through combining target prediction. Afterwards, a T-ALL miRNA and TF co-regulatory network was constructed, and its significance was tested by statistical methods. Four miRNAs in the miR-17–92 cluster and four important genes (CYLD, HOXA9, BCL2L11 and RUNX1) were found as hubs in the network. Particularly, we found that miR-19 was highly expressed in T-ALL patients and cell lines. Ectopic expression of miR-19 represses CYLD expression, while miR-19 inhibitor treatment induces CYLD protein expression and decreases NF-κB expression in the downstream signaling pathway. Thus, miR-19, CYLD and NF-κB form a regulatory FFL, which provides new clues for sustained activation of NF-κB in T-ALL. Taken together, we provided the first miRNA-TF co-regulatory network in T-ALL and proposed a model to demonstrate the roles of miR-19 and CYLD in the T-cell leukemogenesis. This study may provide potential therapeutic targets for T-ALL and shed light on combining bioinformatics with experiments in the research of complex diseases.
our preliminary data and bioinformatics analysis suggest that DNA methylation plays an important and complex role in the regulation of miRNA expression in HCC, which may provide insights into the pathogenesis of HCC and thus may be used for diagnosis and intervention.
CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and gene expression. Recent studies suggest that RNA transcripts, mostly long non-coding RNAs (lncRNAs), can serve as locus-specific factors to bind and recruit CTCF to the chromatin. However, it remains unclear whether specific sequence patterns are shared by the CTCF-binding RNA sites, and no RNA motif has been reported so far for CTCF binding. In this study, we have developed DeepLncCTCF, a new deep learning model based on a convolutional neural network and a bidirectional long short-term memory network, to discover the RNA recognition patterns of CTCF and identify candidate lncRNAs binding to CTCF. When evaluated on two different datasets, human U2OS dataset and mouse ESC dataset, DeepLncCTCF was shown to be able to accurately predict CTCF-binding RNA sites from nucleotide sequence. By examining the sequence features learned by DeepLncCTCF, we discovered a novel RNA motif with the consensus sequence, AGAUNGGA, for potential CTCF binding in humans. Furthermore, the applicability of DeepLncCTCF was demonstrated by identifying nearly 5000 candidate lncRNAs that might bind to CTCF in the nucleus. Our results provide useful information for understanding the molecular mechanisms of CTCF function in 3D genome organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.