Snow density is an essential property of snowpack. To obtain the spatial variability of snow density and estimate it in different periods of the snow season remain challenging, particularly in the mountainous area. This study analysed the spatial variability of snow density with in‐situ measurements in three different periods (i.e., accumulation, stable and melt periods) of the snow seasons of 2017/2018 and 2018/2019 in the middle Tianshan Mountains, China. The simulation performances of the multiple linear regression (MLR) model and three machine learning (random forest [RF], extreme gradient boosting [XGB] and light gradient boosting machine [LGBM]) models were evaluated. Results showed that snow density in the melt period (0.27 g cm−3) was generally greater than that in the stable (0.20 g cm−3) and accumulation periods (0.18 g cm−3), and the spatial variability of snow density in the melt period was slightly smaller compared to that in other two periods. The snow density in the mountainous areas was generally higher than that in the plain or oasis areas. It increased significantly (p < 0.05) with elevation during the accumulation and stable periods. In addition to elevation, latitude and ground surface temperature also had critically impacted the spatial variability of snow density in the study area. In the current study, the machine learning models, especially RF, performed better than MLR for simulating snow density in the three periods. Based on the key environmental variables identified by the machine learning model and correlation analysis, this study also provides practical MLR equations to estimate the spatial variance of snow density during different snow periods in the middle Tianshan Mountains. This method can be used for regional snow mass and snow water equivalent prediction, leading to a better understanding of local snow resources.
Dew is an essential water resource for the survival and reproduction of organisms in arid and semi-arid regions. Yet estimating the dew amount and quantifying its long-term variation are challenging. In this study, we elucidate the dew amount and its long-term variation in the Kunes River Valley, Northwest China, based on the measured daily dew amount and reconstructed values (using meteorological data from 1980 to 2021), respectively. Four key results were found: (1) the daily mean dew amount was 0.05 mm during the observation period (4 July-12 August and 13 September-7 October of 2021). In 35 d of the observation period (i.e., 73% of the observation period), the daily dew amount exceeded the threshold (>0.03 mm/d) for microorganisms; (2) air temperature, relative humidity, and wind speed had significant impacts on the daily dew amount based on the relationships between the measured dew amount and meteorological variables; (3) for estimating the daily dew amount, random forest (RF) model outperformed multiple linear regression (MLR) model given its larger R 2 and lower MAE and RMSE; and (4) the dew amount during June-October and in each month did not vary significantly from 1980 to the beginning of the 21 st century. It then significantly decreased for about a decade, after it increased slightly from 2013 to 2021. For the whole meteorological period of 1980-2021, the dew amount decreased significantly during June-October and in July and September, and there was no significant variation in June, August, and October. Variation in the dew amount in the Kunes River Valley was mainly driven by relative humidity. This study illustrates that RF model can be used to reconstruct long-term variation in the dew amount, which provides valuable information for us to better understand the dew amount and its relationship with climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.