The rapidly spreading, highly contagious and pathogenic SARS-coronavirus 2 (SARS-CoV-2) associated Coronavirus Disease 2019 (COVID-19) has been declared as a pandemic by the World Health Organization (WHO). The novel 2019 SARS-CoV-2 enters the host cell by binding of the viral surface spike glycoprotein (S-protein) to cellular angiotensin converting enzyme 2 (ACE2) receptor. The virus specific molecular interaction with the host cell represents a promising therapeutic target for identifying SARS-CoV-2 antiviral drugs. The repurposing of drugs can provide a rapid and potential cure toward exponentially expanding COVID-19. Thereto, high throughput virtual screening approach was used to investigate FDA approved LOPAC library drugs against both the receptor binding domain of spike protein (S-RBD) and ACE2 host cell receptor. Primary screening identified a few promising molecules for both the targets, which were further analyzed in details by their binding energy, binding modes through molecular docking, dynamics and simulations. Evidently, GR 127935 hydrochloride hydrate, GNF-5, RS504393, TNP, and eptifibatide acetate were found binding to virus binding motifs of ACE2 receptor. Additionally, KT203, BMS195614, KT185, RS504393, and GSK1838705A were identified to bind at the receptor binding site on the viral S-protein. These identified molecules may effectively assist in controlling the rapid spread of SARS-CoV-2 by not only potentially inhibiting the virus at entry step but are also hypothesized to act as anti-inflammatory agents, which could impart relief in lung inflammation. Timely identification and determination of an effective drug to combat and tranquilize the COVID-19 global crisis is the utmost need of hour. Further, prompt in vivo testing to validate the anti-SARS-CoV-2 inhibition efficiency by these molecules could save lives is justified.
The rapidly spreading, highly contagious and pathogenic SARS-coronavirus 2 (SARS-CoV-2) associated Coronavirus Disease 2019 (COVID-19) has been declared as a pandemic by the World Health Organization (WHO). The novel 2019 SARS-CoV-2 enters the host cell by binding of the viral surface spike glycoprotein (S-protein) to angiotensin converting enzyme 2 (ACE2). The virus specific molecular interaction with the host cell represents a promising therapeutic target for identifying SARS-CoV-2 antiviral drugs. The repurposing of drugs can provide a rapid and potential cure towards exponentially expending COVID-19. Thereto, high-throughput virtual screening approach was used to investigate FDA approved LOPAC library drugs against both the S-protein and ACE2 host cell receptor. Primary screening identified a few promising drugs for both the targets, which were further analyzed in details by their binding energy, binding modes through molecular docking, dynamics and simulations. Evidently, Eptifibatide acetate, TNP, GNF5, GR 127935 hydrochloride hydrate and RS504393 were found binding to virus binding motifs of ACE2 receptor. Additionally, KT185, KT203 GSK1838705A, BMS195614, and RS504393 were identified to bind at the receptor binding site on the viral S-protein. These identified drug molecules may effectively assist in controlling the rapid spread of SARS-COV-2 by not only potentially inhibiting the virus at entry step but also as anti-inflammatory agents which could impart relief in lung injuries. Timely identification and determination of an effective drug to combat and tranquilize the COVID-19 global crisis is the utmost need of hour. Further, prompt in vivo testing to validate the anti-SARS-COV-2 inhibition by these drugs could save lives is justified.
The sudden rise in COVID-19 cases in 2020 and the incessant emergence of fast-spreading variants have created an alarming situation worldwide. Besides the continuous advancements in the design and development of vaccines to combat this deadly pandemic, new variants are frequently reported, possessing mutations that rapidly outcompeted an existing population of circulating variants. As concerns grow about the effects of mutations on the efficacy of vaccines, increased transmissibility, immune escape, and diagnostic failures are few other apprehensions liable for more deadly waves of COVID-19. Although the phenomenon of antigenic drift in new variants of SARS-CoV-2 is still not validated, it is conceived that the virus is acquiring new mutations as a fitness advantage for rapid transmission or to overcome immunological resistance of the host cell. Considerable evolution of SARS-CoV-2 has been observed since its first appearance in 2019, and despite the progress in sequencing efforts to characterize the mutations, their impacts in many variants have not been analyzed. The present article provides a substantial review of literature explaining the emerging variants of SARS-CoV-2 circulating globally, key mutations in viral genome, and the possible impacts of these new mutations on prevention and therapeutic strategies currently administered to combat this pandemic. Rising infections, mortalities, and hospitalizations can possibly be tackled through mass vaccination, social distancing, better management of available healthcare infrastructure, and by prioritizing genome sequencing for better serosurveillance studies and community tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.