New 5G architecture gives access to New Radio (NR) with co-exist LTE. 3GPP LTE-A transition towards NR is a wireless technology that is widely employed in the cellular mobile network to support significantly high volume traffic. In this paper, we propose the best N-subset reduction and a modified RME algorithm (BNSRME) as an uplink multiuser scheduler. It is responsible for allocating resources among the active users in the most effective manner. The N-subset reduction method selects the best chunk of continuous resource blocks from the available system bandwidth. Users are assigned chunks based on channel-dependent selection and utility function. The BNSRME scheduling algorithm aims to optimize performance, spectral efficiency, and allows multiuser scheduling where multiple active users are allocated the same time-frequency resources. We consider the threshold cap SNRT to improve sensitivity quality for satisfactory users. The approach is MU scheduling which will be the most commonly deployed in non-stand-alone (NSA) 5G uplink cellular network. The result shows that the system spectral efficiency improves by 32.55 % by using the proposed multiuser algorithm compared to single user scheduling in an uplink. It has been shown that its performance can be further improved by using the MU-MIMO system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.