Individually, MXene and graphene based frameworks have been recognized as promising 2D electrode materials for metal ion batteries. Herein, we have engineered a heterostructure of V3C2 MXene and graphene using computational design. A comprehensive investigation of designed heterostructure has been reported in this work. Simulated heterostructure has been evaluated for various functionalities such as high performance of thermal stability, metal ion intercalation, diffusion energy using density functional theory method. Interestingly, simulation examinations and obtained calculations demonstrate the high storage capacity of Li and Ca (598.63 mAh g−1), and Na (555.87 mAh g−1) with the designed V3C2/graphene model. Promising diffusion energy barriers for Li (0.11 eV), Na (0.17 eV) and Ca (0.15 eV) ions are also investigated and have explained systematically in the present work. Moreover, we have achieved high capacity and fast charge/discharge rates of V3C2/graphene heterostructure indicating its promising electrode potential efficiency for ion batteries especially for Na ion battery. Thus, our investigation demonstrate the advantages of newly designed V3C2 MXene and graphene heterostructure for advance metal ion batteries.
First principles investigations are performed to understand the spin-polarized transport in Magnetic Tunnel Junctions (MTJs) consisting of an out-of-plane graphene sheet as a barrier in between two CrO Half-Metallic-Ferromagnetic (HMF) electrodes. Upon comparison of the results with the results of in-plane graphene based MTJs reported in the past, it is observed that out-of-plane structures offer a high TMR of ∼100% and the transport phenomenon is tunneling since there are no transmission states near the Fermi level. However, in in-plane structures, the transport phenomenon cannot be tunneling since there are a significant number of transmission states near the Fermi level, although a high Magneto Resistance (MR) of ∼90% is observed. Both the TMR and Spin Injection Efficiency η (Spin-Filtration) are higher in out-of-plane structures in comparison to in-plane structures, which is due to the graphene sheet acting as a perfect barrier in out-of-plane structures, which results in negligible spin down current (I↓) in both the Parallel Configuration (PC) and Antiparallel Configuration (APC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.