The Navigation with Indian Constellation (NavIC)/ Indian Regional Navigation Satellite System (IRNSS) is an independent navigation system developed for the Indian subcontinent by the Indian Space Research Organisation (ISRO). The positional accuracy of this system is mainly affected by the ionosphere of the lowlatitude equatorial Indian subcontinent, as large ionospheric gradients and intense irregularities are present in it. The objective of this study is to improve the positional accuracy of NavIC/IRNSS systems by applying ionospheric correction using the most suitable single-frequency model. The data to be analysed were collected from the NavIC/IRNSS receiver provided by the Space Applications Centre, ISRO. A comparative analysis between the dual-frequency model and singlefrequency model (e.g. GIVE model, coefficient-based model) was performed on the data from the NavIC/ IRNSS receiver. Different ionospheric models were applied to compute ionospheric delay (ionodelay) on a quiet day (3 < K P < 5). Our result shows that both the single-frequency Grid Ionosphere Vertical Error (GIVE) model and dual frequency model outperform remarkably compared to the traditional coefficientbased model. The GIVE model was also analysed on FAR categorized satellites for different stormy days of different months. It was observed that during stormy days also, the 3D position computed by applying the GIVE model was nearly the same as the dualfrequency model.
The delay in Navigation with Indian Constellation (NavIC)/Indian Regional Navigation Satellite System (IRNSS) signals due to the ionosphere are decisive because it leads to significant changes in the positional accuracy of the system. In this paper, we try to estimate the ionospheric time delay (ionodelay) precisely using the local Taylor Series Expansion (TSE) algorithm for a single frequency NavIC/IRNSS system. The performance of the local TSE algorithm is examined by considering two cases. In case I, the TSE was validated under the influence of an intense geomagnetic storm (8 September 2017) by considering NavIC/IRNSS data from the Indian equatorial and Equatorial Ionization Anomaly (EIA) regions. In case II, based on the quiet and disturbed days data, the local TSE model was examined at different locations in the local area (<10 km) using two NavIC/IRNSS receivers (i.e. reference and rover). The results of ionodelay and positional accuracy (Three Dimensional Distance Root Mean Square [3DRMS], Circular Error Probability [CEP], and Spherical Error Probability [SEP]) of NavIC/IRNSS for both the cases indicates that the single frequency local TSE algorithm performs the same as the reference dual frequency model, where as the global eight coefficient Klobuchar and the regional Grid Ionospheric Vertical Error (GIVE) model behaves differently. Therefore, the single-frequency TSE model improves the performance of the NavIC/IRNSS receiver in the local area, and the mathematical coefficient computation and additional frequency hardware cost have been reduced, with the acceptance of a maximum 0.8 m of errors.
The Navigation with Indian Constellation (NavIC)/Indian Regional Navigation Satellite System (IRNSS) is an emerging satellite navigation system that provides an independent navigation system for positioning and timing services in India and up to 1,500 km from its borderline. The dual frequency NavIC system uses the L5 frequency and S-band for navigation. These navigation signals are extremely weak and susceptible to interference when they are received on Earth's surface. Moreover, the performance of these bands may be degraded by other band or out-of-band communication systems, which can become the major threat to the performance of a NavIC receiver. The main focus of this paper is to detect real-time interference of Wi-Fi signals in the S-band of the NavIC receiver. The results are prepared with respect to the Power Spectral Density (PSD), execution of acquisition stage and the detection of Wi-Fi interference with two sample hypothesis testing methods including the Kolmogorov-Smirnov (KS)-test, the t-test and the Variance (var)-test. A performance analysis of the p-value is used to measure the evidence of interference existence for hypothesis testing, decision hypothesis and probability of detection are evaluated for each hypothesis method. The results show the severity of the Wi-Fi signal as a potential source of interference for future NavIC applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.