In recent years, deep learning-based sentiment analysis has received attention mainly because of the rise of social media and e-commerce. In this paper, we showcase the fact that the polarity detection and subjectivity detection subtasks of sentiment analysis are inter-related. To this end, we propose a knowledge-sharing-based multitask learning framework. To ensure high-quality knowledge sharing between the tasks, we use the Neural Tensor Network, which consists of a bilinear tensor layer that links the two entity vectors. We show that BERT-based embedding with our MTL framework outperforms the baselines and achieves a new state-of-the-art status in multitask learning. Our framework shows that the information across datasets for related tasks can be helpful for understanding task-specific features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.