The online version of this article has a supplementary appendix.Background C-type lectin-like molecule-1 is a transmembrane receptor expressed on myeloid cells, acute myeloid leukemia blasts and leukemic stem cells. To validate the potential of this receptor as a therapeutic target in acute myeloid leukemia, we generated a series of monoclonal antibodies against the extracellular domain of C-type lectin-like molecule-1 and used them to extend the expression profile analysis of acute myeloid leukemia cells and to select cytotoxic monoclonal antibodies against acute myeloid leukemia cells in preclinical models. Design and MethodsC-type lectin-like molecule-1 expression was analyzed in acute myeloid leukemia cell lines, and in myeloid derived cells from patients with acute myeloid leukemia and healthy donors. Anti-C-type lectin-like molecule-1 antibody-mediated in vitro cytotoxic activity against acute myeloid leukemia blasts/cell lines and in vivo anti-cancer activity in a mouse xenograft model were assessed. Internalization of C-type lectin-like molecule-1 monoclonal antibodies upon receptor ligation was also investigated. -stem cells, but not in acute lymphoblastic leukemia blasts (n=5). Selected anti-C-type lectin-like molecule-1 monoclonal antibodies mediated dose-dependent complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity specifically against acute myeloid leukemiaderived cell lines. Exogenous expression of the transmembrane receptor in HEK293 cells rendered the cells susceptible to antibody-mediated killing by monoclonal antibodies to the receptor. Furthermore, these monoclonal antibodies demonstrated strong complement-dependent cytotoxicity against freshly isolated acute myeloid leukemia blasts (15/16 cases; 94%). The monoclonal antibodies were efficiently internalized upon binding to Ctype lectin-like molecule-1 in HL-60 cells. Moreover, a lead chimeric C-type lectin-like molecule-1 monoclonal antibody reduced the tumor size in xenograft mice implanted with HL-60 cells. ConclusionsOur results demonstrate that targeting C-type lectin-like molecule-1 with specific cytotoxic monoclonal antibodies is an attractive approach which could lead to novel therapies for acute myeloid leukemia.Key words: C-type, lectin-like molecule-1, immunotherapy, acute myeloid leukemia.Citation: Zhao X, Singh S, Pardoux C, Zhao J, Hsi ED, Abo A, and Korver W. Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica. 2010;95:71-78. doi:10.3324/haematol.2009 This is an open-access paper.Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia
Defining mechanisms that maintain tissue stem cells during homeostasis, stress, and aging is important for improving tissue regeneration and repair and enhancing cancer therapies. Here, we show that Id1 is induced in hematopoietic stem cells (HSCs) by cytokines that promote HSC proliferation and differentiation, suggesting that it functions in stress hematopoiesis. Genetic ablation of Id1 increases HSC self-renewal in serial bone marrow transplantation (BMT) assays, correlating with decreases in HSC proliferation, mitochondrial biogenesis, and reactive oxygen species (ROS) production. Id1 HSCs have a quiescent molecular signature and harbor less DNA damage than control HSCs. Cytokines produced in the hematopoietic microenvironment after γ-irradiation induce Id1 expression. Id1 HSCs display a blunted proliferative response to such cytokines and other inducers of chronic proliferation including genotoxic and inflammatory stress and aging, protecting them from chronic stress and exhaustion. Thus, targeting Id1 may be therapeutically useful for improving HSC survival and function during BMT, chronic stress, and aging.
Fetal globin genes are transcriptionally silenced during embryogenesis through hemoglobin switching. Strategies to derepress fetal globin expression in the adult could alleviate symptoms in sickle cell disease and β-thalassemia. We identified a zinc-finger protein, pogo transposable element with zinc-finger domain (POGZ), expressed in hematopoietic progenitor cells. Targeted deletion of Pogz in adult hematopoietic cells in vivo results in persistence of embryonic β-like globin expression without affecting erythroid development. POGZ binds to the Bcl11a promoter and erythroid-specific intragenic regulatory regions. Pogz mice show elevated embryonic β-like globin expression, suggesting that partial reduction of Pogz expression results in persistence of embryonic β-like globin expression. Knockdown of POGZ in primary human CD34 progenitor cell-derived erythroblasts reduces BCL11A expression, a known repressor of embryonic β-like globin expression, and increases fetal hemoglobin expression. These findings are significant, since new therapeutic targets and strategies are needed to treat β-globin disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.