Significant reduction in glutamate receptor 1 (GluR1)- and GluR2/3-immunopositive neurons was demonstrated in the hilus of the dentate gyrus in mice killed on days 1, 7 and 60 after pilocarpine-induced status epilepticus (PISE). In addition, GluR1 and GluR2/3 immunostaining in the strata oriens, radiatum and lacunosum moleculare of areas CA1-3 decreased drastically on days 7 and 60 after PISE. Neuronal loss observed in the above regions may account, at least in part, for a decrease in GluR immunoreactivity. By contrast, many GluR1-immunopositive neurons were observed in the gliotic area of CA1. Of these, about 42.8% were immunopositive for markers for hippocampal interneurons, namely calretinin (7.6%), calbindin (12.8%) and parvalbumin (22.4%). GluR1 or GluR2/3 and BrdU double-labelling showed that the GluR1- and GluR2/3-immunopositive neurons at 60 days after PISE were neurons that had survived rather than newly generated neurons. Furthermore, anterograde tracer and double-labelling studies performed on animals at 60 days after PISE indicated a projection from the hilus of the dentate gyrus to gliotic areas in both CA3 and CA1, where the projecting fibres apparently established connections with GluR1-immunopositive neurons. The projection to CA1 was unexpected. These novel findings suggest that the intrinsic hippocampal neuronal network is altered after PISE. We speculate that GluR1-immunopositive neurons in gliotic CA1 act as a bridge between dentate gyrus and subiculum contributing towards epileptogenesis.
At 4 h during pilocarpine-induced status epilepticus (DPISE) in rat, protein kinase C (PKC)beta1, PKCbeta2, and PKCgamma were induced at the border between the stratum oriens and alveus (O/A border) of CA1 in the hippocampus. Induced PKCgamma was colocalized with metabotropic glutamate receptor alpha (mGluR alpha). By intracerebroventricular injection of mGluR1alpha antagonists, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), PKCbeta1, PKCbeta2, and PKCgamma immunoreactive products decreased dramatically; however, intracerebroventricular injection of saline did not change the expression of PKCbeta1, PKCbeta2, and PKCgamma, suggesting that these three PKC isoforms might be involved in mGluR1alpha-related excitoneurotoxicity. One day after pilocarpine-induced status epilepticus (APISE), PKCdelta was induced in microglial cells. At this time point, both PKCgamma and PKCepsilon immunopositive products decreased in the inner molecular layer of upper blade of the stratum granulosum. At 7-31 days APISE, induced PKCbeta1, PKCdelta, PKCeta, and PKCzeta positive astrocytes were demonstrated in all parts of hippocampus, suggesting that they may be involved in gliosis. By this time, both PKCgamma and PKCepsilon immunopositive products in the inner molecular layer had almost disappeared, suggesting that they may be involved in the inhibition of granule cells by controlling neurotransmitter release presynaptically in the dentate gyrus of normal rats.
We showed that when CA3 pyramidal neurons in the caudal 80% of the dorsal hippocampus had almost disappeared completely, the efferent pathway of CA3 was rarely detectable. We used the mouse pilocarpine model of temporal lobe epilepsy (TLE), and injected iontophoretically the anterograde tracer phaseolus vulgaris leucoagglutinin (PHA-L) into gliotic CA3, medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei, or the retrograde tracer cholera toxin B subunit (CTB) into gliotic CA3 area of hippocampus. In the afferent pathway, the number of neurons projecting to CA3 from medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei increased significantly. In the hippocampus, where CA3 pyramidal neurons were partially lost, calbindin, calretinin, parvalbumin immunopositive back-projection neurons from CA1-CA3 area were observed. Sprouting of Schaffer collaterals with increased number of large boutons in both sides of CA1 area, particularly in the stratum pyramidale, was found. When CA3 pyramidal neurons in caudal 80% of the dorsal hippocampus have almost disappeared completely, surviving CA3 neurons in the rostral 20% of the dorsal hippocampus may play an important role in transmitting hyperactivity of granule cells to surviving CA1 neurons or to dorsal part of the lateral septum. We concluded that reorganization of CA3 area with its downstream or upstream nuclei may be involved in the occurrence of epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.