We are developing an external filter method for equalizing the x-ray exposure in mammography. Each filter is specially designed to match the shape of the compressed breast border and to preferentially attenuate the x-ray beam in the peripheral region of the breast. To be practical, this method should require the use of only a limited number of custom built filters. It is hypothesized that this would be possible if compressed breasts can be classified into a finite number of shapes. A study was performed to determine the number of shapes. Based on the parabolic appearance of the outer borders of compressed breasts in mammograms, the borders were fit with the polynomial equations y = ax2 + bx3 and y = ax2 + bx3 + cx4. The goodness-of-fit of these equations was compared. The a,b and a,b,c coefficients were employed in a K-Means clustering procedure to classify 470 CC-view and 484 MLO-view borders into 2-10 clusters. The mean coefficients of the borders within a given cluster defined the "filter" shape, and the individual borders were translated and rotated to best match that filter shape. The average rms differences between the individual borders and the "filter" were computed as were the standard deviations of those differences. The optimally shifted and rotated borders were refit with the above polynomial equations, and plotted for visual evaluation of clustering success. Both polynomial fits were adequate with rms errors of about 2 mm for the 2-coefficient equation, and about 1 mm for the 3-coefficient equation. Although the fits to the original borders were superior for the 3-coefficient equation, the matches to the "filter" borders determined by clustering were not significantly improved. A variety of modified clustering methods were developed and utilized, but none produced major improvements in clustering. Results indicate that 3 or 4 filter shapes may be adequate for each mammographic projection (CC- and MLO-view). To account for the wide variations in exposures observed at the peripheral regions of breasts classified to be of a particular shape, it may be necessary to employ different filters for thin, medium and thick breasts. Even with this added requirement, it should be possible to use a small number of filters as desired.
We are developing an external filter method for equalizing x-ray exposure in the peripheral region of the breast. This method requires the use of only a limited number of custom-built filters for different breast shapes in a given view. This paper describes the design methodology for these external filters. The filter effectiveness was evaluated through a simulation study on 171 mediolateral and 196 craniocaudal view digitized mammograms and through imaging of a breast phantom. The degree of match between the simulated filter and the individual 3-D exposure profiles at the breast periphery was quantified. An analysis was performed to investigate the effect of filter misalignment. The simulation study indicates that the filter is effective in equalizing exposures for more than 80% of the breast images in our database. The tolerance in filter misalignment was estimated to be about +/- 2 mm for the CC view and +/- 1 mm for the MLO view at the image plane. Some misalignment artifacts were demonstrated with simulated filtered mammograms.
Lateral migration radiography (LMR) is a new form of Compton backscatter imaging (CBI) that utilizes both multiple-scatter and single-scatter photons. The LMR imaging modality uses two pairs of detectors. Each set has a detector that is uncollimated to predominantly image single-scatter photons and the other collimated to image predominantly multiple-scattered photons. This allows generation of two separate images, one containing primarily surface features and the other containing primarily subsurface features. These two images make LMR useful for imaging and identifying objects to a depth of several X-ray photon mean free paths even in the presence of unknown surface clutter or surface imperfections.The principles of LMR are demonstrated through Monte Carlo simulation of the photon transport. The Monte Carlo simulation results are verified with experimental measurements from an LMR system used for landmine detection. The presented research demonstrates the methodology for designing an LMR system, identifies methods for restoring and enhancing LMR images, and lays the foundation for the development of other applications of LMR, including, for example, the nondestructive examination of welds, castings, and composites.
Lateral migration radiography (LMR), a form of Compton backscatter radiography (CBR), is applied to the detection and identification of landinines. The LMR system consists of two inner uncollimated detectors positioned to optimally detect first scattered photons and two outer collimated detectors designed to detect primarily photons that have had two or more scatterings. The difference between the collimated and uncollimated detector responses to both the landmines themselves and the different types of landinine image masking phenomena, form the basis of the image enhancement and landmine identification procedures. Surface feature infonnation is the piimary component of the uncollimated detector response. The collimated detector signal contains information about the surface features as well as the buried objects. The principles ofthe detection system have been shown in previous work and now the focus has shifted to the preparation for field tests and the associated problems.One ofthe expected events that the detector system will encounter is the variation of detector height with respect to the ground. This is caused by irregularities in the surface as well as oscillations of the detection vehicle. The collimated detectors and the uncoffimated detector react differently to height variations. When the detector height increases the uncollimated detector response will be reduced due to the decrease in solid angle. Although the collimated detector will also be affected by the change in solid angle the dominate reaction is the loss ofcollimation causing the coffimated detectors signal to increase. When the detector height decreases the opposite responses are observed. By using the information from both detector systems, the effects ofthe detector height variation can be removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.