Members of the human APOBEC3 family of editing enzymes can inhibit various mobile genetic elements. APOBEC3A (A3A) can block the retrotransposon LINE-1 and the parvovirus adeno-associated virus type 2 (AAV-2) but does not inhibit retroviruses. In contrast, APOBEC3G (A3G) can block retroviruses but has only limited effects on AAV-2 or LINE-1. What dictates this differential target specificity remains largely undefined. Here, we modeled the structure of A3A based on its homology with the C-terminal domain of A3G and further compared the sequence of human A3A to those of 11 nonhuman primate orthologues. We then used these data to perform a mutational analysis of A3A, examining its ability to restrict LINE-1, AAV-2, and foreign plasmid DNA and to edit a single-stranded DNA substrate. The results revealed an essential functional role for the predicted single-stranded DNA-docking groove located around the A3A catalytic site. Within this region, amino acid differences between A3A and A3G are predicted to affect the shape of the polynucleotide-binding groove. Correspondingly, transferring some of these A3A residues to A3G endows the latter protein with the ability to block LINE-1 and AAV-2. These results suggest that the target specificity of APOBEC3 family members is partly defined by structural features influencing their interaction with polynucleotide substrates.
Human APOBEC3 proteins are editing enzymes that can interfere with the replication of exogenous retroviruses such as human immunodeficiency virus (HIV), hepadnaviruses such as hepatitis B virus (HBV), and with the retrotransposition of endogenous retroelements such as longinterspersed nuclear elements (LINE) and Alu. Here, we show that APOBEC3G, but not other APOBEC3 family members, binds 7SL RNA, the common ancestor of Alu RNAs that is specifically recruited into HIV virions. Our data further indicate that APOBEC3G recognizes 7SL RNA and Alu RNA by its common structure, the Alu domain, suggesting a mechanism for APOBEC3G-mediated inhibition of Alu retrotransposition. However, we also demonstrate that APOBEC3F and APOBEC3G are normally recruited into and inhibit the infectivity of ΔVif HIV1 virions when 7SLRNA is prevented from accessing particles by RNA interference against SRP14 or by over expression of SRP19, both components of the signal recognition particle. We thus conclude that 7SL RNA is not an essential mediator of the virion packaging of these antiviral cytidine deaminases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.