Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO
2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.
Coastal communities are some of the most at-risk populations with respect to climate change impacts. It is therefore important to determine the vulnerability of such communities to co-develop viable adaptation options. Global efforts to address this issue include international scientific projects, such as Global Learning for Local Solutions (GULLS), which focuses on five fast warming regions of the southern hemisphere and aims to provide an understanding of the local scale processes influencing community vulnerability that can then be up-scaled to regional, country and global levels. This paper describes the development of a new social and ecological vulnerability framework which integrates exposure, sensitivity and adaptive capacity with the social livelihoods and food security approaches. It also measures community flexibility to understand better the adaptive capacity of different levels of community organization. The translation of the conceptual framework to an implementable method is described and its application in a number of "hotspot" countries, where ocean waters are warming faster than the rest of the world, is presented. Opportunities for cross-cultural comparisons to uncover similarities and differences in vulnerability and adaptation patterns among the study's coastal communities, which can provide accelerated learning mechanisms to other coastal regions, are highlighted. The social and ecological framework and the associated survey approach allow for future integration of local-level vulnerability data with ecological and oceanographic models.
This work was carried out in collaboration between all authors. Author SSS planned, designed and implemented the study, performed the statistical analysis and developed the draft manuscript. Authors HEJ, NRA, RXS, AMS and MM were involved in the data collection, tabulation, literature searches and assistance in the analysis managed the analyses of the study. All authors read and approved the final manuscript.
A B S T R A C TMarine social-ecological systems are influenced by the way humans interact with their environment, and external forces, which change and re-shape the environment. In many regions, exploitation of marine resources and climate change are two of the primary drivers shifting the abundance and distribution of marine living resources, with negative effects on marine-dependent communities. Governance systems determine 'who' makes decisions, 'what' are their powers and responsibilities, and 'how' they are exercised. Understanding the connections between the actors comprising governance systems and influences between governance and the environment is therefore critical to support successful transitions to novel forms of governance required to deal with environmental changes. The paper provides an analytical framework with a practical example from Vanuatu, for mapping and assessment of the governance system providing for management of coral reef fish resources. The framework enables a rapid analysis of governance systems to identify factors that can encourage, or hinder, the adaptation of communities to changes in abundance or availability of marine resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.