A significant number of clinical trials have been undertaken to explore the use of mesenchymal stem cells (MSCs) for the treatment of several diseases such as Crohn's disease, diabetes, bone defects, myocardial infarction, stroke etc., Due to their efficiency in homing to the tissue injury sites, their differentiation potential, the capability to secrete a large amount of trophic factors and their immunomodulatory effects, MSCs are becoming increasingly popular and expected to be one of the promising therapeutic approaches. However, challenges associated with the isolation of pure MSC populations, their culture and expansion, specific phenotypic characterization, multi-potential differentiation and challenges of efficient transplantation limit their usage. The current strategies of cell-based therapies emphasize introducing beneficial genes, which will improve the therapeutic ability of MSCs and have better homing efficiency. The continuous improvement in gene transfer technologies has broad implications in stem cell biology. Although viral vectors are efficient vehicles for gene delivery, construction of viral vectors with desired genes, their safety and immunogenicity limit their use in clinical applications. We review current gene delivery approaches, including viral and plasmid vectors, for transfecting MSC with beneficial genes. The review also discusses the use of a few emerging technologies that could be used to improve the transfer/induction of desirable genes for cell therapy.
Purpose: Immunotherapy efficacy data on appendiceal cancer from clinical trials does not exist, due to appendiceal cancer incidence of 0.97 per 100,000. The goal of this study was to preclinically explore the application of immunotherapy in treating appendiceal cancer in a personalized organoid model. Experimental Design: Patient tumor organoids (PTO) were fabricated using unsorted tumor cells with and without enrichment with patient-matched immune components derived from peripheral blood leukocytes, spleen, or lymph nodes [immune-enhanced PTOs (iPTO)]. Organoids were cultured for 7 days, followed by treatment with immunotherapy (pembrolizumab, ipilimumab, nivolumab), and assessed for treatment efficacy. Results: Between September 2019 and May 2021, 26 patients were enrolled in the study. Successful testing was conducted in 19 of 26 (73.1%) patients, with 13 of 19 (68.4%) and 6 of 19 (31.6%) patients having low-grade appendiceal (LGA) and high-grade appendiceal (HGA) primaries, respectively. Immunotherapy response, with increased expression of granzyme B and cleaved caspase 3 and decreased expression of CK20 and ATP activity, was exhibited in 4 of 19 (21.1%) pembrolizumab-treated and 2 of 19 (10.5%) nivolumab-treated iPTOs. Post-immunotherapy cellular viability, in responding HGA organoids to pembrolizumab, decreased to less than 15% (P < 0.05). LGA iPTO treatment responses were observed in pembrolizumab and nivolumab, with an 8%–47.4% (P < 0.05) viability compared with controls. Ipilimumab showed no efficacy in the examined cohort. Conclusions: Immunotherapy shows measurable efficacy in appendiceal cancer organoids. Information derived from immunocompetent organoids may be applied in selecting patients for clinical trial enrollment in rare diseases where preclinical models of disease are lacking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.