Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu) in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu) of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.
Metabolic syndrome, encompassing type 2 diabetes mellitus and cardiovascular disease, is a growing health concern of industrialized countries. Ferulic acid (FA) is a phenolic acid found in foods normally consumed by humans that has demonstrated antioxidant activity, cholesterol-lowering capabilities, and anti-tumorigenic properties. Select probiotic bacteria, including Lactobacillus fermentum NCIMB 5221, produce FA due to intrinsic ferulic acid esterase activity. The aim of the present research was to investigate a FA-producing probiotic, L. fermentum NCIMB 5221, as a biotherapeutic for metabolic syndrome. The probiotic formulation was administered daily for 8 weeks to Zucker diabetic fatty (ZDF) rats, a model of hyperlipidemia and hyperglycemia. Results show that the probiotic formulation reduced fasting insulin levels and insulin resistance, significantly reduced serum triglycerides (p = 0.016), lowered serum low-density lipoprotein cholesterol levels (p = 0.008), and significantly reduced the atherogenic (p = 0.016) and atherosclerosis (p = 0.012) index as compared to the control animals. In addition, the probiotic formulation significantly increased high-density lipoprotein cholesterol levels (p = 0.041) as compared to the control animals. This research indicates that administration of the FA-producing L. fermentum NCIMB 5221 has the potential to reduce insulin resistance, hyperinsulinemia, hypercholesterolemia, and other markers involved in the pathogenesis of metabolic syndrome. Further studies are required to investigate the human clinical potential of the probiotic formulation in affecting the markers and pathogenesis of metabolic syndrome.
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.
Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.