Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Increased expression of ALDH1A1 has been identified in a wide-range of human cancer stem cells and is associated with cancer relapse and poor prognosis, raising the potential of ALDH1A1 as a therapeutic target. To facilitate quantitative high-throughput screening (qHTS) campaigns for the discovery, characterization and structure-activity-relationship (SAR) studies of small molecule ALDH1A1 inhibitors with cellular activity, we show herein the miniaturization to 1536-well format and automation of a high-content cell-based ALDEFLUOR assay. We demonstrate the utility of this assay by generating dose-response curves on a comprehensive set of prior art inhibitors as well as hundreds of ALDH1A1 inhibitors synthesized in house. Finally, we established a screening paradigm using a pair of cell lines with low and high ALDH1A1 expression, respectively, to uncover novel cell-active ALDH1A1-specific inhibitors from a collection of over 1,000 small molecules.
Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.
Emerging evidence has established primary nephrotic syndrome (NS), including focal segmental glomerulosclerosis (FSGS), as a primary podocytopathy. Despite the underlying importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of NS, no treatment currently targets the podocyte ER. In our monogenic podocyte ER stress-induced NS/FSGS mouse model, the podocyte type 2 ryanodine receptor (RyR2)/calcium release channel on the ER was phosphorylated, resulting in ER calcium leak and cytosolic calcium elevation. The altered intracellular calcium homeostasis led to activation of calcium-dependent cytosolic protease calpain 2 and cleavage of its important downstream substrates, including the apoptotic molecule procaspase 12 and podocyte cytoskeletal protein talin 1. Importantly, a chemical compound, K201, can block RyR2-Ser2808 phosphorylation-mediated ER calcium depletion and podocyte injury in ER-stressed podocytes, as well as inhibit albuminuria in our NS model. In addition, we discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) can revert defective RyR2-induced ER calcium leak, a bioactivity for this ER stress-responsive protein. Thus, podocyte RyR2 remodeling contributes to ER stress-induced podocyte injury. K201 and MANF could be promising therapies for the treatment of podocyte ER stress-induced NS/FSGS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.