To assess the condition of the structures of buildings and structures, a comprehensive analysis of the factors affecting their performance characteristics - concrete strength, protective layer, and rebar diameter, thermal conductivity and moisture content of concrete, adhesion of protective and facing coatings, frost resistance and water resistance of concrete - is required. However, with all the variety of monitored parameters the control of concrete strength has a special place because when assessing the condition of the structure the determining factor is the compliance of the actual strength of concrete to the design requirements. This paper presents studies on the determination of concrete strength based on modern technology, wireless sensor as well as instrumentation IPS. These methods are particularly effective in the case of non-linear relationships between different system parameters, as in the behavior of concrete parameters. They can also provide rapid measurements by continuously monitoring the internal condition of the reinforced concrete structure. The features of each method are given, as well as an analysis of the convergence of the results.
Enclosure design is the most important stage of product development. A proprietary enclosure has many advantages as well as disadvantages. The most important part of the design of an electronic device enclosure is the preliminary research stage. Each device has its own technological peculiarities, which are taken into account during the development of concepts. This article presents the peculiarities of the development of enclosure for wireless sensor for monitoring of reinforced concrete structures, discusses the important aspects of each stage.
The maturity method is deservedly considered one of the reliable indirect methods for determining the strength at the early stages of concrete curing. The main parameter in the calculation is the internal temperature of concrete that accumulates during the chemical reaction of concrete curing, while external factors such as ambient temperature and relative humidity are fallaciously omitted. In this work, the complex maturity method was developed based on ASTM C1074, accounting for the influence of ambient temperature and relative humidity and coefficients indicating their influence weight. The laboratory testing to measure the concrete strength by compression method and non-destructive sclerometer method were performed on concrete samples according to ASTM C109, GOST 22690, and GOST 10180. According to the calibration dependence of the existing and proposed methods results in comparison with the strength of cubic samples, the highest coefficient of determination R2 = 0.976 was revealed for the complex method of maturity, which indicates its reliability in contrast with sclerometer and traditional maturity methods. The determination of complex maturity allows for an evaluation of the current state of concrete strength, but also reduces the waiting time for concrete curing and increases the economic effect during construction.
This study investigated the potential influence of operating water levels and loading conditions on the slope stability of an embankment dam. Four different operating reservoir levels (normal, reduced, embankment height, and overflow) were considered in the study. Numerical modeling was used to investigate the problem in the case of the Chardara dam within the Syrdarya catchment in Kazakhstan. Based on the drawdown rates and operating conditions, minimum factor of safety values ranging from 0.56 (total failure) to 2.5 were retrieved. Furthermore, a very high correlation was observed between drawdown days, the minimum factor of safety values, the maximum factor of safety values, and pore-water pressures, with correlation coefficients ranging from 0.561 to 0.997 (strong to very strong correlation). On the other hand, the highest negative correlation of 0.997 was observed between the minimum factor of safety values and pore-water pressures. Additionally, based on the results from the analysis of variance, three reservoir operating levels (normal, embankment height, and overflow) resulted in p-values less than 0.05, indicating that the variations in the factor of safety values from the drawdown rates were statistically significant. The findings of this study demonstrated that, not only may the drawdown rate be detrimental to the embankments, but that different operating levels can also affect slope stability in different ways.
Concrete strength gain can be significantly affected by the initial characteristics of the raw materials. Unfortunately, information on the potential influence of the initial water pH on concrete strength gain is still scarce. In this study, the potential effects of the initial water pH on concrete strength gain were investigated using a combination of sensors and a sclerometric test. The impact of initial pH on the strength gain process was investigated using three distinct pH values (4.0, 7.0, and 12). The primary variables examined were pH variations over time, internal temperature, and strength gain. The problem was further examined using a number of statistical techniques, including Single-way Analysis of Variance, Scheffé’s approach, and Correlation Matrixes. When the temperature data from 4.0, 7.0, and 12 pH values were put through the Analysis of Variance, a p-value of 2.4 × 10−261 was retrieved. Additionally, when the strength gain data from 4.0, 7.0, and 12 pH values were subjected to the Analysis of Variance, a p-value of 2.9 × 10−168 was retrieved. The results showed that the differences in the list data retrieved from the investigated pH values were statistically significant. Based on the results, we can state that the initial pH level in the mixing water can have noticeably varied consequences in terms of the strength gain of the concrete and should be carefully considered during the preparation process of concrete. The findings retrieved from this study provide a piece of useful information in the construction field, especially with concrete strength management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.