Entomopathogenic nematodes (EPNs) are potent insect parasites and have been used for pest control in agriculture. Despite the complexity of the EPN infection process, hosts are typically killed within 5 days of initial infection. When free-living infective juveniles (IJs) infect a host, they release their bacterial symbiont, secrete toxic products, and undergo notable morphological changes. Collectively, this process is referred to as “activation” and represents the point in a nematode’s life cycle when it becomes actively parasitic. The effect of different host tissues and IJ age on activation, and how activation itself is related to virulence, are not well understood. Here, we employed a recently developed bioassay, which quantifies IJ activation, as a tool to address these matters. Appreciating that activation is a key part of the EPN infection process, we hypothesized that activation would positively correlate to virulence. Using the EPNs Steinernema carpocapsae and S. feltiae we found that EPN activation is host-specific and influenced by infective juvenile age. Additionally, our data suggest that activation has a context-dependent influence on virulence and could be predictive of virulence in some cases such as when IJ activation is especially low.
Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection. Moreover, we show that FARs dampen key components of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Our data also reveal that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for an efficient immune response. Collectively, these data support a complex role for FARs in immunosuppression in animals and provide detailed mechanistic insight into parasitism in phylum Nematoda.
Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we provide the first in vivo study that shows FARs modulate animal immunity, causing an increase in susceptibility to bacterial infection. Next we determined that FARs dampen various aspects of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Finally, we found that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for a functional immune response. Collectively, these data reveal a complex role for FARs in immunosuppression and provide detailed mechanistic insight into parasitism in phylum Nematoda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.