Sn-In alloys are promising low-melting-point Pb-free solders. Knowledge of the ternary Sn-In-Cu liquidus projection is important for Sn-In solder applications. Sn-In-Cu ternary alloys were prepared and their primary solidification phases and phase-transformation temperatures during heating were determined. The liquidus projection of the Sn-In-Cu ternary system was determined based on the primary solidification phase at different compositional regimes, the phase-transformation temperatures of the ternary alloys, the phase boundaries and reaction temperatures of the constituent binary systems, and the available ternary Sn-In-Cu data in the literature. No ternary compound was found in the as-cast alloys. The Sn-In-Cu liquidus projection has 11 primary solidification phase regions and seven ternary invariant reactions with the liquid phase, and g-(Cu 6 Sn 5 ,Cu 2 In) has a very large compositional regime as the primary solidification phase. A very interesting phenomenon that was also observed is that the solidification paths of some Sn-In-Cu alloys surpass the liquidus trough after their intersections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.