In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties. Directional optical properties can be exploited to enhance the performance of optoelectronic devices, optomechanical actuators and metamaterials. In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling-MoS₂ and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS₂ mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si-based electronics), leading to loss of functionality. Self-healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self-healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm −2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self-healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self-healable, low-voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.
We report a pneumatic nozzle-based printing technique that can control the crystallization of small molecule organic semiconductor thin-films during deposition. By tuning the printing speed and the substrate temperature, large sized organic crystals were grown along the printing direction, resulting in field-effect mobility enhancement by 50 times compared to spin-coated films for TIPS-pentacene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.