Introduction In this report, we aim to describe the design for the randomised controlled trial of Stereotactic electroencephalogram (EEG)-guided Radiofrequency Thermocoagulation versus Anterior Temporal Lobectomy for Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (STARTS). Mesial temporal lobe epilepsy (mTLE) is a classical subtype of temporal lobe epilepsy that often requires surgical intervention. Although anterior temporal lobectomy (ATL) remains the most popular treatment for mTLE, accumulating evidence has indicated that ATL can cause tetartanopia and memory impairments. Stereotactic EEG (SEEG)-guided radiofrequency thermocoagulation (RF-TC) is a non-invasive alternative associated with lower seizure freedom but greater preservation of neurological function. In the present study, we aim to compare the safety and efficacy of SEEG-guided RF-TC and classical ATL in the treatment of mTLE. Methods and analysis STARTS is a single-centre, two-arm, randomised controlled, parallel-group clinical trial. The study includes patients with typical mTLE over the age of 14 who have drug-resistant seizures for at least 2 years and have been determined via detailed evaluation to be surgical candidates prior to randomisation. The primary outcome measure is the cognitive function at the 1-year follow-up after treatment. Seizure outcomes, visual field abnormalities after surgery, quality of life, ancillary outcomes, and adverse events will also be evaluated at 1-year follow-up as secondary outcomes. Discussion SEEG-guided RF-TC for mTLE remains a controversial seizure outcome but has the advantage for cognitive and visual field protection. This is the first RCT studying cognitive outcomes and treatment results between SEEG-guided RF-TC and standard ATL for mTLE with hippocampal sclerosis. This study may provide higher levels of clinical evidence for the treatment of mTLE. Trial registration ClinicalTrials.gov NCT03941613. Registered on May 8, 2019. The STARTS protocol has been registered on the US National Institutes of Health. The status of the STARTS was recruiting and the estimated study completion date was December 31, 2021.
Background: Introducing multiple different stereoelectroencephalography electrodes in a three-dimensional (3D) network to create a 3D-lesioning field or stereo-crossed radiofrequency thermocoagulation (scRF-TC) might create larger lesioning size; however, this has not been quantified to date. This study aimed to quantify the configurations essential for scRF-TC. Methods: By using polyacrylamide gel (PAG), we investigated the effect of electrode conformation (angled/parallel/multiple edges) and electrode distance of creating an electrode network. Volume, time, and temperature were analyzed quantitatively with magnetic resonance imaging, video analysis, and machine learning. A network of electrodes to the pathological left area 47 was created in a patient; the seizure outcome and coverage range were further observed. Results: After the compatibility test between the PAG and brain tissue, the sufficient distance of contacts (from different electrodes) for confluent lesioning was 7 mm with the PAG. Connection to the lesioning field could be achieved even with a different arrangement of electrodes. One contact could achieve at least six connections with different peripheral contacts. Coagulation with a network of electrodes can create more significant lesioning sizes, 1.81–2.12 times those of the classic approaches. The confluent lesioning field created by scRF-TC had a volume of 38.7 cm3; the low metabolic area was adequately covered. The representative patient was free of seizures throughout the 12-month follow up. Conclusion: Lesioning with electrodes in a network manner is practical for adequate 3D coverage. A secondary craniotomy could be potentially prevented by combining both monitoring and a large volume of lesions.
Introduction: In this report, we aim to describe the design for the randomized controlled trial of Stereotactic-electroencephalogram (EEG) guided Radiofrequency Thermocoagulation versus Anterior Temporal Lobectomy for Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (STARTS). Mesial temporal lobe epilepsy (mTLE) is a classical subtype of temporal lobe epilepsy that often requires surgical intervention. Although anterior temporal lobectomy (ATL) remains the most popular treatment for mTLE, accumulating evidence has indicated that ATL can cause tetartanopia and memory impairments. Stereotactic EEG (SEEG)-guided radiofrequency thermocoagulation (RF-TC) is a non-invasive alternative associated with lower seizure freedom but greater preservation of neurological function. In the present study, we aim to compare the safety and efficacy of SEEG-guided RF-TC and classical ATL in the treatment of mTLE. Methods and analysis: STARTS is a single-centre, two-arm, randomised controlled, parallel-group clinical trial. The study includes patients with typical mTLE over the age of 14 who have drug-resistant seizures for at least 2 years and have been determined via detailed evaluation to be surgical candidates prior to randomisation. The primary outcome measure is cognitive function at the 1-year follow-up after treatment. Seizure outcomes, visual field abnormalities after surgery, quality of life, ancillary outcomes, and adverse events will also be evaluated at 1-year follow-up as secondary outcomes. Disscussion: SEEG-guided RF-TC for mTLE remains a controversial seizure outcome but has the advantage for cognitive and visual filed protection. This is the first RCT studying cognitive outcomes and treatment results between SEEG-guided RF-TC and standard ATL for mTLE with hippocampal sclerosis. This study may provide a higher levels of clinical evidence for the treatment for mTLE. Trial registration: The STARTS protocol has been registered on the US National Institutes of Health (ClinicalTrials.gov): NCT03941613. The status of the STARTS was recruiting and the estimated study completion date was December 31, 2021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.