Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16INK4a , and p21
CIP1. Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.Supplemental material is available at http://www.genesdev.org.
The INK4a/ARF tumor suppressor locus, a key executor of cellular senescence, is regulated by members of the Polycomb group (PcG) of transcriptional repressors. Here we show that signaling from oncogenic RAS overrides PcG-mediated repression of INK4a by activating the H3K27 demethylase JMJD3 and down-regulating the methyltransferase EZH2. In human fibroblasts, JMJD3 activates INK4a, but not ARF, and causes p16INK4a -dependent arrest. In mouse embryo fibroblasts, Jmjd3 activates both Ink4a and Arf and elicits a p53-dependent arrest, echoing the effects of RAS in this system. Our findings directly implicate JMJD3 in the regulation of INK4a/ARF during oncogene-induced senescence and suggest that JMJD3 has the capacity to act as a tumor suppressor.Supplemental material is available at http://www.genesdev.org.
A hallmark of p53 function is to regulate a transcriptional program in response to extracellular and intracellular stress that directs cell cycle arrest, apoptosis, and cellular senescence. Independent of the role of p53 in the nucleus, some of the anti-proliferative functions of p53 reside within the mitochondria [1]. p53 can arrest cell growth in response to mitochondrial p53 in an EJ bladder carcinoma cell environment that is naïve of p53 function until induced to express p53 [2]. TP53 can independently partition with endogenous nuclear and mitochondrial proteins consistent with the ability of p53 to enact senescence. In order to address the role of p53 in navigating cellular senescence through the mitochondria, we identified SirT3 to rescue EJ/p53 cells from induced p53-mediated growth arrest. Human SirT3 function appears coupled with p53 early during the initiation of p53 expression in the mitochondria by biochemical and cellular localization analysis. Our evidence suggests that SirT3 partially abrogates p53 activity to enact growth arrest and senescence. Additionally, we identified the chaperone protein BAG-2 in averting SirT3 targeting of p53 -mediated senescence. These studies identify a complex relationship between p53, SirT3, and chaperoning factor BAG-2 that may link the salvaging and quality assurance of the p53 protein for control of cellular fate independent of transcriptional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.