Structural differences have been reported between primary open angle glaucoma (POAG) and normal tension glaucoma (NTG), and biomechanical differences between POAG and NTG may account for why NTG patients are more vulnerable to lower intraocular pressure (IOP). This study compared the biomechanical properties of POAG and NTG patients using the Corvis scheimpflug technology (ST) non-contact Scheimpflug-based tonometer, and determined the factors associated with these properties. In this retrospective cross-sectional study, 46 eyes with POAG, 54 eyes with NTG, and 61 control eyes were included. A non-contact Scheimpflug-based tonometer was used to examine and compare the corneal biomechanical responses in the POAG, NTG, and normal groups. We used univariate and multivariate regression analyses to determine the factors associated with the deformation amplitude in each group. Baseline characteristics, including age, IOP, spherical equivalent, keratometry, axial length, and central corneal thickness, were similar among the 3 groups. Severity of glaucoma, as measured by mean deviation, was similar between POAG and NTG groups. Applanation 1 velocity and deformation amplitude were significantly smaller in POAG (0.13 ± 0.02 and 1.06 ± 0.14, respectively) than NTG (0.14 ± 0.01 and 1.13 ± 0.11, respectively) and normal groups (0.14 ± 0.02 and 1.13 ± 0.10, respectively). Radius of curvature was significantly larger in the POAG group compared to the normal group. In normal controls, IOP and keratometry were significant factors related to deformation amplitude. In POAG eyes, IOP was a statistically significant predictor of deformation amplitude. In NTG eyes, however, IOP , keratometry, and axial length were statistically significant predictors of deformation amplitude. POAG eyes showed less deformable corneas compared to NTG and normal controls. IOP was significantly correlated with deformation amplitude in all groups. However, axial length was positively correlated with deformation amplitude only in NTG eyes. Characterization of the differences in biomechanical properties between POAG and NTG may contribute to a better understanding of the underlying pathophysiologies associated with these diseases.
Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.
Background In the present study, we evaluated the correlation between meibomian gland dropout and meibum quality in the same central 8 meibomian glands of the eyelid. Methods Ninety-nine eyes of 91 patients with dry eye were included in the study. Dropout of the 8 central meibomian glands of the eyelids was graded as 0, 1, 2, or 3, according to the dropout area. The meibum quality was graded as follows: grade 0, no secretion; 1, inspissated/toothpaste consistency; 2, cloudy liquid secretion; and 3, clear liquid secretion. For 68 eyes of 68 patients, correlation analysis between dropout and meibum quality was performed. To precisely analyze the direct correlation between meibomian gland dropout in meibography and meibum quality, we evaluated 31 eyes of 23 patients with focal dropout in meibography. Results The median (interquartile range) meiboscore was 1.0 (2.0) in the upper eyelids and 0.0 (1.0) in the lower eyelids. The median (interquartile range) meibum quality grade was 3.0 (1.0) in the upper eyelids and 1.0 (1.0) in the lower eyelids. No significant correlation between the meiboscore and meibum quality grade was detected in the upper (p =0.746) or lower (p =0.551) eyelids. Analysis of the direct correlation between meibomian gland dropout in meibography and meibum quality in patients with focal dropout (loss of 1 or 2 adjacent meibomian glands), however, indicated that meibomian glands with dropout secreted little to no meibum. Conclusions Overall analysis revealed no relationship between meibomian gland dropout and meibum quality, but more detailed investigation of each meibomian gland alone revealed that meibomian glands with dropout secrete little to no meibum.
Efficient green energy technologies are essential for sustainable green hydrogen applications. However, economic reasons necessitate bridging technologies between fossil fuels and green hydrogen. Natural gas, the cleanest fossil fuel, can provide non-carboncontaining energy resources, such as hydrogen and ammonia. Ammonia is suitable for economical hydrogen storage and transportation and for direct use as a fuel. In this study, efficient liquefied natural gas (LNG) cold energy utilization and recovery methods developed for producing ammonia are Design 1: energy production in an organic Rankine cycle and Design 2: energy reduction in an air separation unit (ASU). In Design 1, LNG cold energy is converted into power and supplied to the nitrogen compression stage for synthesizing ammonia. In Design 2, LNG cold energy is directly provided to the ASU to reduce the outlet temperature of nitrogen, which is sent to the compression stage, and the compression energy is consequently reduced. Through thermodynamic analysis, the process of LNG cold energy recovery is determined, and the energy consumption in each design is compared. Techno-economic analysis presents the cost reduction in the levelized cost of ammonia (LCOA). Compared with the base case, the energy consumption and LCOA in Design 2 are reduced by 11.54 and 23.02%, respectively.
We identify the angiotensin II (AngII)-associated changes in the extracellular matrix (ECM) and the biomechanical properties of the sclera after systemic hypotension. Systemic hypotension was induced by administering oral hydrochlorothiazide. AngII receptor levels and ECM components in the sclera and biomechanical properties were evaluated based on the stress–strain relationship after systemic hypotension. The effect of inhibiting the AngII receptor with losartan was determined in the systemic hypotensive animal model and the cultured scleral fibroblasts from this model. The effect of losartan on retinal ganglion cell (RGC) death was evaluated in the retina. Both AngII receptor type I (AT-1R) and type II (AT-2R) increased in the sclera after systemic hypotension. Proteins related to the activation of fibroblasts (transforming growth factor [TGF]-β1 and TGF-β2) indicated that transformation to myofibroblasts (α smooth muscle actin [SMA]), and the major ECM protein (collagen type I) increased in the sclera after systemic hypotension. These changes were associated with stiffening of the sclera in the biomechanical analysis. Administering losartan in the sub-Tenon tissue significantly decreased the expression of AT-1R, αSMA, TGF-β, and collagen type I in the cultured scleral fibroblasts and the sclera of systemic hypotensive rats. The sclera became less stiff after the losartan treatment. A significant increase in the number of RGCs and decrease in glial cell activation was found in the retina after the losartan treatment. These findings suggest that AngII plays a role in scleral fibrosis after systemic hypotension and that inhibiting AngII could modulate the tissue properties of the sclera, resulting in the protection of RGCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.