Sulfur budgets in catchments indicated that about 80% of the deposited sulfur was retained in the subtropical soil, it alleviates the historical acidification caused by elevated deposition. The strong sulfur retention was attributed to the reversible sulfate adsorption in previous studies. Here we report that sulfate reduction is a prominent yet thus far overlooked mechanism for sulfur retention, based upon the comprehensive evidence of soil sulfur storage and multi-isotope within entire soil profile along a hydrological continuum in a typical subtropical catchment of China. Using a dual isotopic mass balance model, we determined that annual flux of reduction accounted for approximately 38% of sulfur retention, which was close to the proportion of reduced species in soil. Consequently, the release of sulfur legacy would be less serious with the decreasing sulfur deposition in China, compared to the projections only considering adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.