In situ TiC particles-reinforced FeCrNiCu high-entropy alloy matrix composites were prepared by vacuum induction melting method. The reaction mechanisms of the mixed powder (Ti, Cu and C) were analyzed, and the mechanical properties of resultant composites were determined. Cu 4 Ti were formed in the reaction of Cu and Ti when the temperature rose to 1160 K. With the temperature further increased to 1182 K, newly formed Cu 4 Ti reacted with C to give rise to TiC particles as reinforcement agents. The apparent activation energy for these two reactions was calculated to be 578.7 kJ/mol and 1443.2 kJ/ mol, respectively. The hardness, tensile yield strength and ultimate tensile strength of the 15 vol% TiC/FeCrNiCu composite are 797.3 HV, 605.1 MPa and 769.2 MPa, respectively, representing an increase by 126.9%, 65.9% and 36.0% as compared to the FeCrNiCu high-entropy base alloy at room temperature. However, the elongation-to-failure is reduced from 21.5 to 6.1% with the formation of TiC particles. It was revealed that Orowan mechanism, dislocation strengthening and load-bearing effect are key factors responsible for a marked increase in the hardness and strength of the high-entropy alloy matrix composites.
In deep rock engineering, the rock mass can be subjected to thermal stress caused by sudden changes in temperature, which is referred to as thermal shock (TS). To study the effect of TS on heated sandstone, three cooling methods are used to provide different cooling rates. Then the coupled dynamic and static loading tests are carried out on the heated sandstone by means of a modified split Hopkinson pressure bar (SHPB) system. The test results show that as the heating level increases, the dry density, P-wave velocity, and the dynamic combined strength of the heated sandstone decrease, while specimen porosity increases. Particularly, a sharp change in the physical properties of sandstone can be observed at 650 °C, which is believed to be caused by the α-β transition of quartz at 573 °C. At each heating level of the test, the damage caused by the higher cooling rate to the heated sandstone is more than that caused by the lower cooling rate. The different failure modes of sandstone with increasing temperature are analyzed. The mechanism of TS acting on heated sandstone is discussed, and two typical fracture patterns reflecting the action of TS are identified through SEM.
Thermal shock (TS) is known as the process where fractures are generated when rocks go through sudden temperature changes. In the field of deep rock engineering, the rock mass can be subjected to the TS process in various circumstances. To study the influence of TS on the mechanical behaviors of rock, sandstone specimens are heated at different high temperatures and three cooling methods (stove cooling, air cooling, and freezer cooling) are adopted to provide different cooling rates. The coupled dynamic and static loading tests are performed on the heated sandstone through a modified split Hopkinson pressure bar (SHPB) system. The influence of heating level and cooling rate on the dynamic compressive strength, energy dissipations, and fracturing characteristics is investigated based on the experimental data. The development of the microcracks of the sandstone specimens after the experiment is analyzed utilizing a scanning electron microscope (SEM). The extent of the development of the microcracks serves to explain the variation pattern of the mechanical responses and energy dissipations of the specimens obtained from the loading test. The findings of this study are valuable for practices in rock engineering involving high temperature and fast cooling.
This study investigates the affecting pattern of cooling rates on the physical and mechanical properties of granite at high temperature. The different cooling rates are realized by cooling the heated granite specimens in the air at room temperature, −60 °C, and −100 °C. Slow cooling in the unplugged furnace is also performed on an additional set of specimens as a reference group. Physical and mechanical tests are performed on the granite specimens after thermal shock treatments. The results indicate a decreasing trend of the dry density, P-wave velocity, strength, and fracture toughness, and an increasing trend of the porosity, as the heating level or the cooling rate ascends. The microscopic observation on the fracture surface of the tested specimens manifests the deteriorating effect of thermal shock with a higher cooling rate, where the transition from trans-granular and intra-granular fracturing to intergranular fracturing serves to explain the variation pattern of the properties obtained in the lab tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.