Melanocortin peptides and at least two subtypes of melanocortin receptors (MC3-R and MC4-R) are present in brain regions involved in cardiovascular regulation. In urethaneanesthetized rats, unilateral microinjection of ␣-melanocytestimulating hormone (MSH) into the medullary dorsal-vagal complex (DVC) causes dose-dependent (125-250 pmol) hypotension and bradycardia, whereas ␥-MSH is less effective. The effects of ␣-MSH are inhibited by microinjection to the same site of the novel MC4-R/MC3-R antagonist SHU9119 (2-100 pmol) but not naloxone (270 pmol), whereas the similar effects of intra-DVC injection of -endorphin (1 pmol) are inhibited by naloxone and not by SHU9119. Hypotensive and bradycardic responses to electrical stimulation of the arcuate nucleus also are inhibited by ipsilateral intra-DVC microinjection of SHU9119. ␥-MSH and ACTH(4 -10), but not ␣-MSH, elicit dose-dependent (0.1-12.5 nmol) pressor and tachycardic effects, which are much more pronounced after intracarotid than after intravenous administration. The effects of ␥-MSH (1.25 nmol) are not inhibited by the intracarotid injection of SHU9119 (1.25-12.5 nmol) or the novel MC3-R antagonist SHU9005 (1.25-12.5 nmol). We conclude that the hypotension and bradycardia elicited by the release of ␣-MSH from arcuate neurons is mediated by neural melanocortin receptors (MC4-R/MC3-R) located in the DVC, whereas the similar effects of -endorphin, a peptide derived from the same precursor, are mediated by opiate receptors at the same site. In contrast, neither MC3-R nor MC4-R is involved in the centrally mediated pressor and tachycardic actions of ␥-MSH, which, likely, are mediated by an as yet unidentified receptor.
Electromagnetic (EM) waves have been widely applied in wireless communications, radar detection, navigation, and target recognition. Radiation and scattering are two common behaviors in the EM community, but it remains a long‐standing challenge to control them in a dynamical way, especially using a single, low‐cost, and compact hardware. Here, a promising solution is proposed by combining a programmable metasurface with a radiation array, which can manipulate the scattering properties, digitally and in real‐time, and exhibit different radiation modes simultaneously. More advantageous over previous investigations with the fixed radiation‐scattering performance, a field‐programmable gate array is introduced to extend, realize, and verify the multiple functions of the meta‐microstructure (MMS). As a proof‐of‐concept, multiple functions, including polarization conversion, scattering beam manipulation, diffusion scattering, radar cross‐section reduction, EM waves radiation, and vortex beam generation, have been adequately demonstrated by the MMS prototype.
We proposed an ultra-broadband reflective metamaterial with controlling the scattering electromagnetic fields based on a polarization convertor. The unit cell of the polarization convertor was composed of a three layers substrate with double metallic split-rings structure and a metal ground plane. The proposed polarization convertor and that with rotation angle of 90 deg had been employed as the “0” and “1” elements to design the digital reflective metamaterial. The numbers of the “0” and “1” elements were chosen based on the information entropy theory. Then, the optimized combinational format was selected by genetic optimization algorithm. The scattering electromagnetic fields had been manipulated due to destructive interference, which was attributed to the control of phase and amplitude by the proposed polarization convertor. Simulated and experimental results indicated that the reflective metamaterial exhibited significantly RCS reduction in an ultra-broad frequency band for both normal and oblique incidences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.